版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
大庆市重点中学2024届高一上数学期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数f(x)=x-lnx,则函数y=f(x)()A.在区间,(1,e)内均有零点B.在区间,(1,e)内均无零点C.在区间内有零点,在区间(1,e)内无零点D.区间内无零点,在区间(1,e)内有零点2.设长方体的长、宽、高分别为,其顶点都在一个球面上,则该球的表面积为A.3a2 B.6a2C.12a2 D.24a23.已知角α的终边经过点,则等于()A. B.C. D.4.下列函数中,在区间单调递增的是()A. B.C. D.5.的值是A.0 B.C. D.16.给出下列四种说法:①若平面,直线,则;②若直线,直线,直线,则;③若平面,直线,则;④若直线,,则.其中正确说法的个数为()A.个 B.个C.个 D.个7.已知直线、、与平面、,下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则8.“密位制”是用于航海方面的一种度量角的方法,我国采用的“密位制”是密位制,即将一个圆周角分为等份,每一个等份是一个密位,那么密位对应弧度为()A. B.C. D.9.已知集合A={x|x<2},B={x≥1},则A∪B=()A. B.C. D.R10.若,则()A.2 B.1C.0 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知A,B,C为的内角.(1)若,求的取值范围;(2)求证:;(3)设,且,,,求证:12.已知,,则___________.13.终边上一点坐标为,的终边逆时针旋转与的终边重合,则______.14.已知,且,若不等式恒成立,则实数的最大值是__________.15.设,向量,,若,则_______16.函数的最小值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数在上最大值为3,最小值为(1)求的解析式;(2)若,使得,求实数m的取值范围18.已知函数的图象过点(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若为偶函数,求实数的值19.已知函数.(1)判断函数在R上的单调性,并用单调性的定义证明;(2)判断函数的奇偶性,并证明;(3)若恒成立,求实数k的取值范围.20.已知函数,1求的值;2若,,求21.如图,在棱长为1正方体中:(1)求异面直线与所成的角的大小;(2)求三棱锥体积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】求出导函数,由导函数的正负确定函数的单调性,再由零点存在定理得零点所在区间【题目详解】当x∈时,函数图象连续不断,且f′(x)=-=<0,所以函数f(x)在上单调递减又=+1>0,f(1)=>0,f(e)=e-1<0,所以函数f(x)有唯一的零点在区间(1,e)内故选:D2、B【解题分析】方体的长、宽、高分别为,其顶点都在一个球面上,长方体的对角线的长就是外接球的直径,所以球直径为:,所以球的半径为,所以球的表面积是,故选B3、D【解题分析】由任意角三角函数的定义可得结果.【题目详解】依题意得.故选:D.4、B【解题分析】根据单调性依次判断选项即可得到答案.【题目详解】对选项A,区间有增有减,故A错误,对选项B,,令,,则,因为,在为增函数,在为增函数,所以在为增函数,故B正确.对选项C,,,解得,所以,为减函数,,为增函数,故C错误.对选项D,在为减函数,故D错误.故选:B5、B【解题分析】利用诱导公式和和差角公式直接求解.【题目详解】故选:B6、D【解题分析】根据线面关系举反例否定命题,根据面面平行定义证命题正确性.【题目详解】若平面,直线,则可异面;若直线,直线,直线,则可相交,此时平行两平面交线;若直线,,则可相交,此时平行两平面交线;若平面,直线,则无交点,即;选D.【题目点拨】本题考查线面平行关系,考查空间想象能力以及简单推理能力.7、D【解题分析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【题目详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因为,所以平面内存在直线,若,则,且,所以,故D正确.故选:D8、B【解题分析】根据弧度制公式即可求得结果【题目详解】密位对应弧度为故选:B9、D【解题分析】利用并集定义直接求解即可【题目详解】∵集合A={x|x<2},B={x≥1},∴A∪B=R.故选D【题目点拨】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题10、C【解题分析】根据正弦、余弦函数的有界性及,可得,,再根据同角三角函数的基本关系求出,即可得解;【题目详解】解:∵,,又∵,∴,,又∵,∴,∴,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(2)证明见解析(3)证明见解析【解题分析】(1)根据两角和的正切公式及均值不等式求解;(2)先证明,再由不等式证明即可;(3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证.【小问1详解】,为锐角,,,解得,当且仅当时,等号成立,即.【小问2详解】在中,,,,.【小问3详解】由(2)知,令,原不等式等价为,在上为增函数,,,同理可得,,,,故不等式成立,问题得证.【题目点拨】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.12、【解题分析】根据余弦值及角的范围,应用同角的平方关系求.【题目详解】由,,则.故答案为:.13、【解题分析】由题知,进而根据计算即可.【题目详解】解:因为终边上一点坐标为,所以,因为的终边逆时针旋转与的终边重合,所以故答案为:14、9【解题分析】利用求的最小值即可.【题目详解】,当且仅当a=b=时取等号,不等式恒成立,则m≤9,故m的最大值为9.故答案为:9.15、【解题分析】根据向量共线的坐标表示,得到,再由二倍角的正弦公式化简整理,即可得出结果.【题目详解】∵,向量,,∴,∴,∵,∴故答案为:.【题目点拨】本题主要考查由向量共线求参数,涉及二倍角的正弦公式,熟记向量共线的坐标表示即可,属于常考题型.16、##【解题分析】用辅助角公式将函数整理成的形式,即可求出最小值【题目详解】,,所以最小值为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据的最值列方程组,解方程组求得,进而求得.(2)利用分离常数法,结合基本不等式求得的取值范围.【小问1详解】的开口向上,对称轴为,所以在区间上有:,即,所以.【小问2详解】依题意,使得,即,由于,,当且仅当时等号成立.所以.18、(1)(2)(3)【解题分析】(1)函数图象过,代入计算可求出的值,结合对数函数的性质可求出函数的值域;(2)构造函数,求出它在上的值域,即可求出的取值范围;(3)利用偶函数的性质,即可求出【题目详解】(1)因为函数图象过点,所以,解得.则,因为,所以,所以函数的值域为.(2)方程有实根,即,有实根,构造函数,则,因为函数在R上单调递减,而在(0,)上单调递增,所以复合函数是R上单调递减函数所以在上,最小值,最大值为,即,所以当时,方程有实根(3),是R上的偶函数,则满足,即恒成立,则恒成立,则恒成立,即恒成立,故,则恒成立,所以.【题目点拨】本题考查了函数的奇偶性的应用,及对数函数的性质,属于中档题19、(1)在R上的单调递增,证明见解析;(2)是奇函数,证明见解析;(3).【解题分析】(1)利用单调性的定义证明,任取,设,然后判断与0的大小,即可确定单调性.(2),直接利用函数奇偶性的定义判断;(3)利用函数是奇函数,将题设不等式转化为,再利用是上的单调增函数求解.【小问1详解】函数是增函数,任取,不妨设,,∵,∴,又,∴,即,∴函数是上的增函数.【小问2详解】函数为奇函数,证明如下:由解析式可得:,且定义域为关于原点对称,,∴函数是定义域内的奇函数.【小问3详解】由等价于,∵是上的单调增函数,∴,即恒成立,∴,解得.20、(Ⅰ)=1;(Ⅱ)=【解题分析】(1)将代入可得:,在利用诱导公式和特殊角的三角函数值即可;(2)因为,根据两角和的余弦公式需求出和,,,则,根据二倍角公式求出代入即可试题解析:(1)因为,所以;(2)因为,,则所以,考点:1.诱导公式;2.二倍角公式;3.两角和余弦21、(1)45°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度消防检测服务外包合同劳动厅制定2篇
- 2025年度石材行业市场调查与分析合同3篇
- 二零二五年度外墙岩棉板保温材料采购、施工及质量监管合同2篇
- 二零二五年度旅游行业SaaS解决方案销售及服务协议3篇
- 二零二五年度波形护栏安装及售后保养服务合同3篇
- 二零二五年度广告发布合同:某品牌在央视春晚广告投放3篇
- 编织红绳课程设计
- 二零二五年度建筑腻子产品进出口代理合同3篇
- 二零二五年度彩钢房租赁与投资合作协议3篇
- 课程设计怎么形容成语
- (八省联考)河南省2025年高考综合改革适应性演练 思想政治试卷(含答案)
- 综合测试 散文阅读(多文本)(解析版)-2025年高考语文一轮复习(新高考)
- 钣金设备操作培训
- 2024驾校经营权承包合同
- 快递公司与驿站合作协议模板 3篇
- 水利工程招标文件样本
- 品质管控培训质量管理与质量控制课件
- 小数加减乘除计算题大全(300题大全)-
- 第17课 西晋的短暂统一和北方各族的内迁(说课稿)-2024-2025学年七年级历史上册素养提升说课稿(统编版2024)
- 2023-2024学年小学语文四年级素养检测复习试题附答案
- 露天矿山全员安全教育培训
评论
0/150
提交评论