2024届湖北省鄂东南省级示范高中教育教学改革联盟高一上数学期末监测模拟试题含解析_第1页
2024届湖北省鄂东南省级示范高中教育教学改革联盟高一上数学期末监测模拟试题含解析_第2页
2024届湖北省鄂东南省级示范高中教育教学改革联盟高一上数学期末监测模拟试题含解析_第3页
2024届湖北省鄂东南省级示范高中教育教学改革联盟高一上数学期末监测模拟试题含解析_第4页
2024届湖北省鄂东南省级示范高中教育教学改革联盟高一上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省鄂东南省级示范高中教育教学改革联盟高一上数学期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数则=()A. B.9C. D.2.已知函数,其中为实数,若对恒成立,且,则的单调递增区间是A. B.C. D.3.已知函数是定义在R上的偶函数,且在上是单调递减的,设,,,则a,b,c的大小关系为()A. B.C. D.4.函数的定义域为A. B.C. D.5.的值等于()A. B.C. D.6.某几何体的三视图如图所示,则该几何的体积为A.16+8 B.8+8C.16+16 D.8+167.设,满足约束条件,则的最小值与最大值分别为()A., B.2,C.4,34 D.2,348.数向左平移个单位,再向上平移1个单位后与的图象重合,则A.为奇函数 B.的最大值为1C.的一个对称中心为 D.的一条对称轴为9.下列函数中哪个是幂函数()A. B.C. D.10.已知,则的值为()A.-4 B.4C.-8 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.若函数(其中)在区间上不单调,则的取值范围为__________.12.已知,,则______.13.对,不等式恒成立,则m的取值范围是___________;若在上有解,则m的取值范围是___________.14.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限15._________.16.东方设计中的“白银比例”是,它的重要程度不亚于西方文化中的“黄金比例”,传达出一种独特的东方审美观.折扇纸面可看作是从一个扇形纸面中剪下小扇形纸面制作而成(如图).设制作折扇时剪下小扇形纸面面积为,折扇纸面面积为,当时,扇面看上去较为美观,那么原扇形半径与剪下小扇形半径之比的平方为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,是平面四边形的对角线,,,且.现在沿所在的直线把折起来,使平面平面,如图.(1)求证:平面;(2)求点到平面的距离.18.设函数为常数,且的部分图象如图所示.(1)求函数的表达式;(2)求函数的单调减区间;(3)若,求的值.19.已知函数,为常数.(1)求函数的最小正周期及对称中心;(2)若时,的最小值为-2,求的值20.已知向量,,且.(1)的值;(2)若,,且,求的值21.设集合,语句,语句.(1)当时,求集合与集合的交集;(2)若是的必要不充分条件,求正实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据函数的解析式求解即可.【题目详解】,所以,故选A2、C【解题分析】先由三角函数的最值得或,再由得,进而可得单调增区间.【题目详解】因为对任意恒成立,所以,则或,当时,,则(舍去),当时,,则,符合题意,即,令,解得,即的单调递增区间是;故选C.【题目点拨】本题主要考查了三角函数的图像和性质,利用三角函数的性质确定解析式,属于中档题.3、A【解题分析】先判断出上单调递增,由,即可得到答案.【题目详解】因为函数是定义在R上的偶函数,所以的图像关于y轴对称,且.又在上是单调递减的,所以在上单调递增.因为,,所以:,所以,即.故选:A4、C【解题分析】要使函数有意义,需满足解得,所以函数的定义域为考点:求函数的定义域【易错点睛】本题是求函数的定义域,注意分母不能为0,同时本题又将对数的运算,交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.学生很容易忽略,造成失误,注意在对数函数中,真数一定是正数,负数和零无意义考点:求函数的定义域5、D【解题分析】利用诱导公式可求得的值.【题目详解】.故选:D6、A【解题分析】由已知中的三视图可得该几何体是一个半圆柱和正方体的组合体,半圆柱底面半径为2,故半圆柱的底面积半圆柱的高故半圆柱的体积为,长方体的长宽高分别为故长方体的体积为故该几何体的体积为,选A考点:三视图,几何体的体积7、D【解题分析】画出约束条件表示的可行域,通过表达式的几何意义,判断最大值与最小值时的位置求出最值即可【题目详解】解:由,满足约束条件表示的可行域如图,由,解得的几何意义是点到坐标原点的距离的平方,所以的最大值为,的最小值为:原点到直线的距离故选D【题目点拨】本题考查简单的线性规划的应用,表达式的几何意义是解题的关键,考查计算能力,属于常考题型.8、D【解题分析】利用函数的图象变换规律得到的解析式,再利用正弦函数的图象,得出结论【题目详解】向左平移个单位,再向上平移1个单位后,可得的图象,在根据所得图象和的图象重合,故,显然,是非奇非偶函数,且它的最大值为2,故排除A、B;当时,,故不是对称点;当时,为最大值,故一条对称轴为,故D正确,故选D.【题目点拨】本题主要考查函数的图象变换规律,正弦函数的图象的对称性,属于基础题.利用y=sinx的对称中心为求解,令,求得x.9、A【解题分析】直接利用幂函数的定义判断即可【题目详解】解:幂函数是,,显然,是幂函数.,,都不满足幂函数的定义,所以A正确故选:A【题目点拨】本题考查了幂函数的概念,属基础题.10、C【解题分析】由已知条件,结合同角正余弦的三角关系可得,再将目标式由切化弦即可求值.【题目详解】由题意知:,即,∴,而.故选:C.【题目点拨】本题考查了同角三角函数关系,应用了以及切弦互化求值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】化简f(x),结合正弦函数单调性即可求ω取值范围.【题目详解】,x∈,①ω>0时,ωx∈,f(x)在不单调,则,则;②ω<0时,ωx∈,f(x)在不单调,则,则;综上,ω的取值范围是.故答案为:.12、【解题分析】把已知的两个等式两边平方作和即可求得cos(α﹣β)的值【题目详解】解:由已知sinα+sinβ=1①,cosα+cosβ=0②,①2+②2得:2+2cos(α﹣β)=1,∴cos(α﹣β),故答案为点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式及两角差的余弦,是基础题13、①.②.【解题分析】(1)根据一元二次函数的图象,考虑开口方向和判别式,即可得到答案;(2)利用参变分离,将问题转化为不等式在上有解;【题目详解】(1)关于x的不等式函数对于任意实数x恒成立,则,解得m的取值范围是.(2)若在上有解,则在上有解,易知当时,当时,此时记,则,,在上单调递减,故,综上可知,,故m的取值范围是.故答案为:;14、二【解题分析】由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限【题目详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号15、【解题分析】根据诱导公式可求该值.【题目详解】.故答案为:.【题目点拨】诱导公式有五组,其主要功能是将任意角的三角函数转化为锐角或直角的三角函数.记忆诱导公式的口诀是“奇变偶不变,符号看象限”.本题属于基础题.16、##【解题分析】设原扇形半径为,剪下小扇形半径为,,由已知利用扇形的面积公式即可求解原扇形半径与剪下小扇形半径之比【题目详解】解:由题意,如图所示,设原扇形半径为,剪下小扇形半径为,,则小扇形纸面面积,折扇纸面面积,由于时,可得,可得,原扇形半径与剪下小扇形半径之比的平方为:故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解题分析】(1)由平面平面,平面平面,且平面,且,根据线面垂直的判定定理可得平面;(2)取的中点,连.由,可得,又平面,所以,又,所以平面,因此就是点到平面的距离,在中,,,所以.试题解析:(1)证明:因为平面平面平面平面,平面,且,所以平面(2)取的中点,连.因为,所以,又平面,所以,又,所以平面,所以就是点到平面的距离,在中,,,所以.所以是点到平面的距离是.【方法点晴】本题主要考查、线面垂直的判定定理及面面垂直的性质定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.18、(1)(2)(3)【解题分析】(1)由图可以得到,,故,而的图像过,故而,结合得到.(2)利用复合函数的单调性来求所给函数的单调减区间,可令,解得函数的减区间为.(3)由得,而,所以.解析:(1)根据图象得,又,所以.又过点,所以,又,所以得:.(2)由得:.即函数的单调减区间为.(3)由,得,所以..19、(1)最小正周期.对称中心为:,.(2)【解题分析】(1)根据周期和对称轴公式直接求解;(2)先根据定义域求的范围,再求函数的最小值,求参数的值.【题目详解】(1)∵,∴的最小正周期令,,解得,,∴的对称中心为:,.(2)当时,,故当时,函数取得最小值,即,∴取得最小值为,∴【题目点拨】本题考查的基本性质,意在考查基本公式和基本性质,属于基础题型.20、(1);(2)【解题分析】(1)首先应用向量数量积坐标公式求得,结合,求得,得到结果;(2)结合题的条件,利用同角三角函数关系式求得,结合角的范围以及(1)的结论,求得,再应用余弦和角公式求得的值,结合角的范围求得,得到结果.【题目详解】(1)因为,,所以因为,所以,即.(2)因为,,所以.因为,,所以.因为,所以,所以.因为,,所以,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论