版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南周口中英文学校2024届数学高一上期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数零点的个数为()A.4 B.3C.2 D.02.“”是“函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.函数的零点所在的一个区间是()A. B.C. D.4.已知扇形的周长为8,圆心角为2弧度,则该扇形的面积为A B.C. D.5.已知函数,若,则实数的取值范围是A. B.C. D.6.已知扇形的圆心角为2弧度,其所对的弦长为2,则扇形的弧长等于A. B.C. D.7.函数的单调递减区间为()A. B.C. D.8.设a,b均为实数,则“a>b”是“a3A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.某三棱锥的三视图如图所示,则该三棱锥的体积是A. B.C. D.10.对于任意实数,给定下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知是球上的点,,,,则球的表面积等于________________12.函数的图象一定过定点,则点的坐标是________.13.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.14.在中,若,则的形状一定是___________三角形.15.我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,平面,,,,则该“阳马”外接球的表面积为________.16.已知函数.若关于的方程,有两个不同的实根,则实数的取值范围是____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来利润y(百万元)与年投资成本x(百万元)变化的一组数据:年份2015201620172018投资成本35917…年利润1234…给出以下3个函数模型:①;②(,且);③(,且).(1)选择一个恰当的函数模型来描述x,y之间的关系,并求出其解析式;(2)试判断该企业年利润不低于6百万元时,该企业是否要考虑转型.18.计算(1);(2).19.近年来,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量(单位:mg/L)与过滤时间(单位:h)间的关系为(,均为非零常数,e为自然对数的底数),其中为时的污染物数量.若经过5h过滤后还剩余90%的污染物.(1)求常数的值;(2)试计算污染物减少到40%至少需要多长时间.(精确到1h,参考数据:,,,,)20.已知,计算:(1);(2).21.已知集合,集合.(Ⅰ)求、、;(Ⅱ)若集合且,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由,得,则将函数零点的个数转化为图象的交点的个数,画出两函数的图象求解即可【题目详解】由,得,所以函数零点的个数等于图象的交点的个数,函数的图象如图所示,由图象可知两函数图象有4个交点,所以有4个零点,故选:A2、A【解题分析】根据充分必要条件的定义判断【题目详解】时,是偶函数,充分性满足,但时,也是偶函数,必要性不满足应是充分不必要条件故选:A3、B【解题分析】判断函数的单调性,再借助零点存在性定理判断作答.【题目详解】函数在R上单调递增,而,,所以函数的零点所在区间为.故选:B4、A【解题分析】利用弧长公式、扇形的面积计算公式即可得出【题目详解】设此扇形半径为r,扇形弧长为l=2r则2r+2r=8,r=2,∴扇形的面积为r=故选A【题目点拨】本题考查了弧长公式、扇形的面积计算公式,属于基础题5、D【解题分析】画出图象可得函数在实数集R上单调递增,故由,可得,即,解得或故实数的取值范围是.选D6、A【解题分析】根据题意画出图形,结合图形求出半径r,再计算弧长【题目详解】如图所示,,,过点O作,C垂足,延长OC交于D,则,;中,,从而弧长为,故选A【题目点拨】本题考查了弧长公式的应用问题,求出扇形的半径是解题的关键,属于基础题7、A【解题分析】解不等式,,即可得答案.【题目详解】解:函数,由,,得,,所以函数的单调递减区间为,故选:A.8、C【解题分析】因为a3-b3=(a-b)(a29、B【解题分析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则,选B.【考点定位】三视图与几何体的体积10、C【解题分析】利用特殊值判断A、B、D,根据不等式的性质证明C;【题目详解】解:对于A:当时,若则,故A错误;对于B:若,,,,满足,则,,不成立,故B错误;对于C:若,则,所以,故C正确;对于D:若,满足,但是,故D错误;故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由已知S,A,B,C是球O表面上的点,所以,又,,所以四面体的外接球半径等于以长宽高分别以SA,AB,BC三边长为长方体的外接球的半径,因为,,所以,所以球的表面积点睛:本题考查了球内接多面体,球的表面积公式,属于中档题.其中根据已知条件求球的直径(半径)是解答本题的关键12、【解题分析】令,得,再求出即可得解.【题目详解】令,得,,所以点的坐标是.故答案:13、【解题分析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果【题目详解】解:由于扇形的圆心角为,扇形的面积为,则扇形的面积,解得:,此扇形所含的弧长.故答案为:.14、等腰【解题分析】根据可得,利用两角和的正弦公式展开,再逆用两角差的正弦公式化简,结合三角形内角的范围可得,即可得的形状.【题目详解】因,,所以,即,所以,可得:,因为,,所以所以,即,故是等腰三角形.故答案为:等腰.15、【解题分析】以,,为棱作长方体,长方体的对角线即为外接球的直径,从而求出外接球的半径,进而求出外接球的表面积.【题目详解】由题意,以,,为棱作长方体,长方体的对角线即为外接球的直径,设外接球的半径为,则故.故答案为:【题目点拨】本题考查了多面体外接球问题以及球的表面积公式,属于中档题.16、【解题分析】作出函数的图象,如图所示,当时,单调递减,且,当时,单调递增,且,所以函数的图象与直线有两个交点时,有三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)可用③来描述x,y之间的关系,(2)该企业要考虑转型.【解题分析】(1)由年利润是随着投资成本的递增而递增,可知①不符合,把,分别代入②③,求出函数解析式,再把代入所求的解析式中,若,则选择此模型;(2)由题知,则x>65,再由与比较,可作出判断.【小问1详解】由表格中的数据可知,年利润是随着投资成本的递增而递增,而①是单调递减,所以不符合题意;将,代入(,且),得,解得,∴.当时,,不符合题意;将,代入(,且),得,解得,∴.当时,;当时,.故可用③来描述x,y之间的关系.【小问2详解】由题知,解得∵年利润,∴该企业要考虑转型.18、(1)2(2)【解题分析】(1)根据对数计算公式,即可求得答案;(2)将化简为,即可求得答案.【小问1详解】【小问2详解】19、(1)(2)42h【解题分析】(1)根据题意,得到,求解,即可得出结果;(2)根据(1)的结果,得到,由题意得到,求解,即可得出结果.【题目详解】(1)由已知得,当时,;当时,.于是有,解得(或).(2)由(1)知,当时,有,解得.故污染物减少到40%至少需要42h.【题目点拨】本题主要考查函数模型的应用,熟记指数函数的性质即可,属于常考题型.20、(1)(2)【解题分析】(1)由同角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论