版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市隆回县2024届高一上数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点一定位于下列哪个区间().A. B.C. D.2.纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是(℃),空气的温度是(℃),经过t分钟后物体的温度T(℃)可由公式得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出,则空气温度是()A.5℃ B.10℃C.15℃ D.20℃3.已知平面向量,,若,则实数的值为()A.0 B.-3C.1 D.-14.已知函数的图像中相邻两条对称轴之间的距离为,当时,函数取到最大值,则A.函数的最小正周期为 B.函数的图像关于对称C.函数的图像关于对称 D.函数在上单调递减5.设,,,则、、的大小关系是A. B.C. D.6.下列函数中,在R上为增函数的是()A.y=2-xC.y=2x7.与2022°终边相同的角是()A. B.C.222° D.142°8.给定函数:①;②;③;④,其中在区间上单调递减的函数序号是()A.①② B.②③C.③④ D.①④9.计算A.-2 B.-1C.0 D.110.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.直三棱柱ABC-A1B1C1,内接于球O,且AB⊥BC,AB=3.BC=4.AA1=4,则球O的表面积______12.若,则________13.写出一个周期为且值域为的函数解析式:_________14.幂函数的图象经过点,则_____________.15.已知函数,则使函数有零点的实数的取值范围是____________16.若,则_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,(1)求函数的值域;(2)若对任意的,都有恒成立,求实数a的取值范围;(3)若对任意的,都存在四个不同的实数,,,,使得,其中,2,3,4,求实数a的取值范围18.设函数(1)若不等式的解集是,求不等式的解集;(2)当时,在上恒成立,求实数的取值范围19.已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:012300.71.63.3为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用20.若函数对任意,恒有(1)指出的奇偶性,并给予证明;(2)如果时,,判断的单调性;(3)在(2)的条件下,若对任意实数x,恒有.成立,求k的取值范围21.已知对数函数.(1)若函数,讨论函数的单调性;(2)对于(1)中的函数,若,不等式的解集非空,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据零点存在性定理可得结果.【题目详解】因为函数的图象连续不断,且,,,,根据零点存在性定理可知函数的零点一定位于区间内.故选:C【题目点拨】关键点点睛:掌握零点存在性定理是解题关键.2、B【解题分析】依题意可得,即,即可得到方程,解得即可;【题目详解】:依题意,即,又,所以,即,解得;故选:B3、C【解题分析】根据,由求解.【题目详解】因为向量,,且,所以,解得,故选:C.4、D【解题分析】由相邻对称轴之间的距离,得函数的最小正周期,求得,再根据当时,函数取到最大值求得,对函数的性质进行判断,可选出正确选项【题目详解】因为函数的图像中相邻两条对称轴之间的距离为,所以,函数的最小正周期,所以,又因为当时,函数取到最大值,所以,,因为,所以,,函数最小正周期,A错误;函数图像的对称轴方程为,,B错误;函数图像的对称中心为,,C错误;所以选择D【题目点拨】由的图像求函数的解析式时,由函数的最大值和最小值求得,由函数的周期求得,代值进函数解析式可求得的值5、B【解题分析】详解】,,,故选B点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小6、C【解题分析】对于A,y=2-x=12x,在R上是减函数;对于B,y=x2在-∞,0上是减函数,在0,+∞上是增函数;对于C,当【题目详解】解:对于A,y=2-x=12对于B,y=x2在-∞,0对于C,当x≥0时,y=2x是增函数,当x<0时,y=x是增函数,所以函数fx对于D,y=lgx的定义域是0,+∞故选:C.7、C【解题分析】终边相同的角,相差360°的整数倍,据此即可求解.【题目详解】∵2022°=360°×5+222°,∴与2022°终边相同的角是222°.故选:C.8、B【解题分析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【题目详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【题目点拨】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.9、C【解题分析】.故选C.10、A【解题分析】本道题目分别结合平面与平面平行判定与性质,平面与平面平行垂直判定与性质,即可得出答案.【题目详解】A选项,结合一条直线与一平面垂直,则过该直线的平面垂直于这个平面,故正确;B选项,平面垂直,则位于两平面的直线不一定垂直,故B错误;C选项,可能平行于与相交线,故错误;D选项,m与n可能异面,故错误【题目点拨】本道题目考查了平面与平面平行判定与性质,平面与平面平行垂直判定与性质,发挥空间想象能力,找出选项的漏洞,即可.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用三线垂直联想长方体,而长方体外接球直径为其体对角线长,容易得到球半径,得解【题目详解】直三棱柱中,易知AB,BC,BB1两两垂直,可知其为长方体的一部分,利用长方体外接球直径为其体对角线长,可知其直径为,∴=41π,故答案为41π【题目点拨】本题主要考查了三棱柱的外接球和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和空间想象能力.12、##0.5【解题分析】利用诱导公式即得.【题目详解】∵,∴.故答案为:.13、【解题分析】根据函数的周期性和值域,在三角函数中确定一个解析式即可【题目详解】解:函数的周期为,值域为,,则的值域为,,故答案为:14、【解题分析】先代入点的坐标求出幂函数,再计算即可.【题目详解】幂函数的图象经过点,设,,解得故,所以.故答案为:.15、【解题分析】令,进而作出的图象,然后通过数形结合求得答案.【题目详解】令,现作出的图象,如图:于是,当时,图象有交点,即函数有零点.故答案为:.16、【解题分析】平方得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解题分析】(1)利用基本函数的单调性即得;(2)由题可得恒成立,再利用基本不等式即求;(3)由题意可知对任意一个实数,方程有四个根,利用二次函数的图像及性质可得,即求.【小问1详解】∵函数,,所以函数在上单调递增,∴函数的值域为;【小问2详解】∵对任意的,都有恒成立,∴,即,即有,故有,∵,,∴,当且仅当,即取等号,∴,即,∴实数a的取值范围为;【小问3详解】∵函数的值域为,由题意可知对任意一个实数,方程有四个根,又,则必有,令,,故有,故有,可解得,∴实数a的取值范围为.18、(1)或(2)【解题分析】(1)由题意,是方程的解,利用韦达定理求解,代入,结合一元二次函数、方程、不等式的关系求解即可;(2),代入转化不等式为,换元法求解的最大值即可【小问1详解】因为不等式的解集是,所以是方程的解由韦达定理解得故不等式为,即解得或故不等式得其解集为或【小问2详解】当时,在上恒成立,所以令,则令,则,由于均为的减函数故在上为减函数所以当时,取最大值,且最大值为3所以所以所以实数的取值范围为.19、(1)选择函数模型,函数解析式为;(2)以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元.【解题分析】(1)对题中所给的三个函【解题分析】对应其性质,结合题中所给的条件,作出正确的选择,之后利用待定系数法求得解析式,得出结果;(2)根据题意,列出函数解析式,之后应用配方法求得最值,得到结果.【题目详解】(1)若选择函数模型,则该函数在上为单调减函数,这与试验数据相矛盾,所以不选择该函数模型若选择函数模型,须,这与试验数据在时有意义矛盾,所以不选择该函数模型从而只能选择函数模型,由试验数据得,,即,解得故所求函数解析式为:(2)设超级快艇在AB段的航行费用为y(万元),则所需时间(小时),其中,结合(1)知,所以当时,答:当该超级快艇以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元【题目点拨】该题考查的是有关函数的应用题,涉及到的知识点有函数模型的正确选择,等量关系式的建立,配方法求二次式的最值,属于简单题目.20、(1)奇函数,证明见解析;(2)在R上单调递减,证明见解析;(3)【解题分析】(1)利用赋值法求出,根据函数奇偶性定义即可证明;(2)根据函数单调性定义即判断函数的单调性;(3)结合函数的奇偶性和单调性,将不等式进行等价转化,即可得到结论【题目详解】(1)为奇函数;证明:令,得,解得:令,则,所以函数为奇函数;(2)在R上单调递减;证明:任意取,且,则,又,即所以在R上单调递减;(3)对任意实数x,恒有等价于成立又在R上单调递减,即对任意实数x,恒成立,当时,即时,不恒成立;当时,即时,则,解得:所以实数k的取值范围为【题目点拨】方法点睛:本题考查函数的单调性、奇偶性及含参不等式的解法,要设法把隐性转化为显性,方法是:(1)把不等式转化为的模型;(2)判断的单调性,再根据函数的单调性将“”脱掉,得到具体的不等式组来求解,但注意奇偶函数的区别.21、(1)详见解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《噪声污染防治法》课件
- 网店美工模拟题+答案
- 吉林省长春市公主岭市2023-2024学年七年级上学期期末模拟考试数学试卷(含答案)
- 养老院老人心理咨询师福利待遇制度
- 养老院老人精神文化生活指导制度
- 《关于液氨的讲课》课件
- 2024年环境检测外包服务合同
- 房屋无偿协议书(2篇)
- 《增值的战略评估》课件
- 2025年上饶货运从业资格证模拟考
- 2024合作房地产开发协议
- 农贸市场通风与空调设计方案
- Unit 6 Food Lesson 1(说课稿)-2024-2025学年人教精通版(2024)英语三年级上册
- 第25课《周亚夫军细柳》复习课教学设计+2024-2025学年统编版语文八年级上册
- 2024年广东省深圳市中考英语试题含解析
- 金蛇纳瑞2025年公司年会通知模板
- 有限空间应急预案演练方案及过程
- GB/T 16288-2024塑料制品的标志
- 四年级英语上册 【月考卷】第三次月考卷(Unit 5-Unit 6) (含答案)(人教PEP)
- 某某市“乡村振兴”行动项目-可行性研究报告
- 中国航空协会:2024低空经济场景白皮书
评论
0/150
提交评论