2024届北师大实验中学高一数学第一学期期末统考试题含解析_第1页
2024届北师大实验中学高一数学第一学期期末统考试题含解析_第2页
2024届北师大实验中学高一数学第一学期期末统考试题含解析_第3页
2024届北师大实验中学高一数学第一学期期末统考试题含解析_第4页
2024届北师大实验中学高一数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北师大实验中学高一数学第一学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各组函数与的图象相同的是()A. B.C. D.2.函数的零点个数为(

)A.1 B.2C.3 D.43.对于函数的图象,关于直线对称;关于点对称;可看作是把的图象向左平移个单位而得到;可看作是把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍而得到以上叙述正确的个数是A.1个 B.2个C.3个 D.4个4.已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入新数据4,5,6,此时样本容量为10,若此时平均数为,方差为,则()A., B.,C., D.,5.当x越来越大时,下列函数中增长速度最快的是()A. B.C. D.6.直线的倾斜角为A.30° B.60°C.120° D.150°7.已知,若,则()A. B.C. D.8.斜率为4的直线经过点A(3,5),B(a,7),C(-1,b)三点,则a,b的值为()A.a=,b=0 B.a=-,b=-11C.a=,b=-11 D.a=-,b=119.,则A.1 B.2C.26 D.1010.已知集合M={x|0≤x<2},N={x|x2-2x-3<0},则M∩N=()A.{x|0≤x<1} B.{x|0≤x<2}C.{x|0≤x≤1} D.{x|0≤x≤2}二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的定义域和值域都是集合,其定义如表所示,则____________.x01201212.计算:___________.13.已知点,若,则点的坐标为_________.14.已知的图象的对称轴为_________________15.已知幂函数的图象过点,且,则a的取值范围是______16.某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,全校参加登山的人数占总人数的.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进行调查,则应从高三年级参加跑步的学生中抽取人数为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,射线、分别与轴正半轴成和角,过点作直线分别交、于、两点,当的中点恰好落在直线上时,求直线的方程18.已知函数.(1)当有是实数解时,求实数的取值范围;(2)若,对一切恒成立,求实数的取值范围.19.已知函数,(1)当时,求的最值;(2)若在区间上是单调函数,求实数a取值范围20.若向量的最大值为(1)求的值及图像的对称中心;(2)若不等式在上恒成立,求的取值范围21.已知函数f(x)=sinxcosx−cos2x+m的最大值为1.(1)求m的值;(2)求当x[0,]时f(x)的取值范围;(3)求使得f(x)≥成立的x的取值集合.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据相等函数的定义即可得出结果.【题目详解】若函数与的图象相同则与表示同一个函数,则与的定义域和解析式相同.A:的定义域为R,的定义域为,故排除A;B:,与的定义域、解析式相同,故B正确;C:的定义域为R,的定义域为,故排除C;D:与的解析式不相同,故排除D.故选:B2、B【解题分析】函数的定义域为,且,即函数为偶函数,当时,,设,则:,据此可得:,据此有:,即函数是区间上的减函数,由函数的解析式可知:,则函数在区间上有一个零点,结合函数的奇偶性可得函数在R上有2个零点.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点3、B【解题分析】由判断;由判断;由的图象向左平移个单位,得到的图象判断;由的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象判断.【题目详解】对于函数的图象,令,求得,不是最值,故不正确;令,求得,可得的图象关于点对称,故正确;把的图象向左平移个单位,得到的图象,故不正确;把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象,故正确,故选B【题目点拨】本题通过对多个命题真假的判断,综合考查三角函数的对称性以及三角函数的图象的变换规律,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.4、B【解题分析】设这10个数据分别为:,进而根据题意求出和,进而再根据平均数和方差的定义求得答案.【题目详解】设这10个数据分别为:,根据题意,,所以,.故选:B.5、B【解题分析】根据函数的特点即可判断出增长速度.【题目详解】因为指数函数是几何级数增长,当x越来越大时,增长速度最快.故选:B6、A【解题分析】直线的斜率为,所以倾斜角为30°.故选A.7、C【解题分析】设,求出,再由求出.【题目详解】设,因为所以,又,所以,所以.故选:C.8、C【解题分析】因为,所以,则,故选C9、B【解题分析】根据题意,由函数的解析式可得,进而计算可得答案.【题目详解】根据题意,,则;故选B.【题目点拨】本题考查分段函数函数值的计算,注意分析函数的解析式.解决分段函数求值问题的策略:(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.10、B【解题分析】先化简集合N,再进行交集运算即得结果.【题目详解】由于N={x|x2-2x-3<0}={x|-1<x<3},M={x|0≤x<2},所以M∩N={x|0≤x<2}故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据表格从里层往外求即可.【题目详解】解:由表可知,.故答案为:.12、7【解题分析】直接利用对数的运算法则以及指数幂的运算法则化简即可.【题目详解】.故答案为:7.13、(0,3)【解题分析】设点的坐标,利用,求解即可【题目详解】解:点,,,设,,,,,解得,点的坐标为,故答案为:【题目点拨】本题考查向量的坐标运算,向量相等的应用,属于基础题14、【解题分析】根据诱导公式可得,然后用二倍角公式化简,进而可求.【题目详解】因为所以,故对称轴为.故答案为:15、【解题分析】先求得幂函数的解析式,根据函数的奇偶性、单调性来求得的取值范围.【题目详解】设,则,所以,在上递增,且为奇函数,所以.故答案为:16、【解题分析】由题意求得样本中抽取的高三的人数为人进而求得样本中高三年级参加登山的人,即可求解.【题目详解】由题意,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,所以样本中抽取的高三的人数为人,又因为全校参加登山的人数占总人数的,所以样本中高三年级参加登山的人数为,所以样本中高三年级参加跑步的人数为人.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】先求出、所在的直线方程,根据直线方程分别设A、B点坐标,进而求出的中点C的坐标,利用点C在直线上以及A、B、P三点共线列关系式解出B点坐标,从而求出直线AB的斜率,然后代入点斜式方程化简即可.【题目详解】解:由题意可得,,所以直线,设,,所以的中点由点在上,且、、三点共线得解得,所以又,所以所以,即直线的方程为【题目点拨】知识点点睛:(1)中点坐标公式:,则AB的中点为;(2)直线的点斜式方程:.18、(1);(2)【解题分析】(1)由题意可知实数的取值范围为函数的值域,结合三角函数的范围和二次函数的性质可知时函数取得最小值,当时函数取得最大值,实数的取值范围是.(2)由题意可得时函数取得最大值,当时函数取得最小值,原问题等价于,求解不等式组可得实数的取值范围是.试题解析:(1)因为,可化得,若方程有解只需实数的取值范围为函数的值域,而,又因为,当时函数取得最小值,当时函数取得最大值,故实数的取值范围是.(2)由,当时函数取得最大值,当时函数取得最小值,故对一切恒成立只需,解得,所以实数的取值范围是.点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.19、(1),.(2)【解题分析】(1)利用二次函数的性质求的最值即可.(2)由区间单调性,结合二次函数的性质:只需保证已知区间在对称轴的一侧,即可求a的取值范围【小问1详解】当时,,∴在上单凋递减,在上单调递增,∴,.【小问2详解】,∴要使在上为单调函数,只需或,解得或∴实数a的取值范围为20、(1)(2)【解题分析】(1)先利用向量的数量积公式和倍角公式对函数式进行化简,再利用两倍角公式以及两角差的正弦公式进行整理,然后根据最大值为解出的值,最后根据正弦函数的性质求得函数的对称中心;(2)首先通过的取值范围来确定函数的范围,再根据不等式在上恒成立,推断出,最后计算得出结果【题目详解】因为的最大值为,所以,由得所以的对称中心为;(2)因为,所以即,因为不等式在上恒成立,所以即解得,的取值范围为【题目点拨】本题考查了向量的相关性质以及三角函数相关性质,主要考查了向量的乘法、三角函数的对称性、三角恒等变换、三角函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论