版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黔东南州2024届高一上数学期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图所示,则该几何体的表面积是A. B.C. D.2.函数的一个零点落在下列哪个区间()A.(0,1) B.(1,2)C.(2,3) D.(3,4)3.已知向量和的夹角为,且,则A. B.C. D.4.已知,则()A. B.C. D.5.在中,已知,则角()A. B.C. D.或6.命题:,命题:(其中),那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=310Q2+3000.设该产品年产量为Q时的平均成本为fA.30 B.60C.900 D.1808.若-4<x<1,则()A.有最小值1 B.有最大值1C.有最小值-1 D.有最大值-19.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B.C. D.10.已知,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,则的值是______.12.命题“”的否定为___________.13.已知函数是定义在R上的增函数,且,那么实数a的取值范围为________14.已知直三棱柱的个顶点都在球的球面上,若,,,,则球的直径为________15.已知,函数在上单调递增,则的取值范围是__16.已知A,B,C为的内角.(1)若,求的取值范围;(2)求证:;(3)设,且,,,求证:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在上的函数是奇函数(1)求实数;(2)若不等式恒成立,求实数的取值范围18.为适应市场需求,某公司决定从甲、乙两种类型工业设备中选择一种进行投资生产,根据公司自身生产经营能力和市场调研,得出生产经营这两种工业设备的有关数据如下表:类别年固定成本每台产品原料费每台产品售价年最多可生产甲设备100万元m万元50万元200台乙设备200万元40万元90万元120台假定生产经营活动满足下列条件:①年固定成本与年生产的设备台数无关;②m为待定常数,其值由生产甲种设备的原料价格决定,且m∈[30,40];③生产甲种设备不需要支付环保、专利等其它费用,而生产x台乙种设备还需支付环保,专利等其它费用0.25x2万元;④生产出来的设备都能在当年全部销售出去(Ⅰ)若该公司选择投资生产甲设备,则至少需要年生产a台设备,才能保证对任意m∈[30,40],公司投资生产都不会赔本,求a的值;(Ⅱ)公司要获得最大年利润,应该从甲、乙两种工业设备中选择哪种设备投资生产?请你为该公司作出投资选择和生产安排19.已知函数,,当时,恒有(1)求的表达式及定义域;(2)若方程有解,求实数的取值范围;(3)若方程的解集为,求实数的取值范围20.在平行四边形中,过点作的垂线交的延长线于点,.连结交于点,如图1,将沿折起,使得点到达点的位置.如图2.证明:直线平面若为的中点,为的中点,且平面平面求三棱锥的体积.21.已知方程x2+y2-2x-4y+m=0(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(3)在(2)的条件下,求以MN为直径的圆的方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由三视图可知几何体是一个底面为梯形的棱柱,再求几何体的表面积得解.【题目详解】由三视图可知几何体是一个底面为直角梯形的棱柱,梯形的上底为1,下底为2,高为2,棱柱的高为2.由题可计算得梯形的另外一个腰长为.所以该几何体的表面积=.故答案为A【题目点拨】本题主要考查三视图找原图,考查几何体的表面积的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理能力.2、B【解题分析】求出、,由及零点存在定理即可判断.【题目详解】,,,则函数的一个零点落在区间上.故选:B【题目点拨】本题考查零点存在定理,属于基础题.3、D【解题分析】根据数量积的运算律直接展开,将向量的夹角与模代入数据,得到结果【题目详解】=8+3-18=8+3×2×3×-18=-1,故选D.【题目点拨】本题考查数量积的运算,属于基础题4、C【解题分析】先对两边平方,构造齐次式进而求出或,再用正切的二倍角公式即可求解.【题目详解】解:对两边平方得,进一步整理可得,解得或,于是故选:C【题目点拨】本题考查同角三角函数关系和正切的二倍角公式,考查运算能力,是中档题.5、C【解题分析】利用正弦定理求出角的正弦值,再求出角的度数.【题目详解】因为,所以,解得:,,因为,所以.故选:C.6、A【解题分析】根据充分性、必要性的定义,结合特例法进行判断即可.【题目详解】当时,,所以由能推出,当时,显然当时,满足,但是不成立,因此是的充分不必要条件,故选:A7、B【解题分析】利用基本不等式进行最值进行解题.【题目详解】解:∵某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=∴f(Q)=当且仅当3Q10=3000Q∴fQ的最小值是60故选:B8、D【解题分析】先将转化为,根据-4<x<1,利用基本不等式求解.【题目详解】又∵-4<x<1,∴x-1<0∴-(x-1)>0∴.当且仅当x-1=,即x=0时等号成立故选:D【题目点拨】本题主要考查基本不等式的应用,还考查了转化求解问题的能力,属于基础题.9、A【解题分析】正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积10、B【解题分析】利用诱导公式由求解.【题目详解】因为,所以,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、##【解题分析】根据三角函数定义得到,,进而得到答案.【题目详解】角的终边经过点,,,.故答案为:.12、【解题分析】根据特称命题的否定为全称命题求解.【题目详解】因为特称命题的否定为全称命题,所以“”的否定为“”,故答案:.13、【解题分析】利用函数单调性的定义求解即可.【题目详解】由已知条件得,解得,则实数的取值范围为.故答案为:.14、【解题分析】根据题设条件可以判断球心的位置,进而求解【题目详解】因为三棱柱的个顶点都在球的球面上,若,,,,所以三棱柱的底面是直角三角形,侧棱与底面垂直,的外心是斜边的中点,上下底面的中心连线垂直底面,其中点是球心,即侧面,经过球球心,球的直径是侧面的对角线的长,因为,,,所以球的半径为:故答案为:15、【解题分析】本题已知函数的单调区间,求参数的取值范围,难度中等.由,得,又函数在上单调递增,所以,即,注意到,即,所以取,得考点:函数的图象与性质【方法点晴】已知函数为单调递增函数,可得变量的取值范围,其必包含区间,从而可得参数的取值范围,本题还需挖掘参数的隐含范围,即函数在上单调递增,可知,因此,综合题16、(1)(2)证明见解析(3)证明见解析【解题分析】(1)根据两角和的正切公式及均值不等式求解;(2)先证明,再由不等式证明即可;(3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证.【小问1详解】,为锐角,,,解得,当且仅当时,等号成立,即.【小问2详解】在中,,,,.【小问3详解】由(2)知,令,原不等式等价为,在上为增函数,,,同理可得,,,,故不等式成立,问题得证.【题目点拨】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1(2)【解题分析】(1)根据奇函数的性质,,求参数后,并验证;(2)结合函数单调性和奇函数的性质,不等式变形得恒成立,再根据判别式求实数的取值范围【小问1详解】∵是定义域为的奇函数,∴,∴,则,满足,所以成立.【小问2详解】中,函数单调递减,单调递增,故在上单调递增原不等式化为,∴即恒成立,∴,解得18、(Ⅰ)10(Ⅱ)详见解析【解题分析】(Ⅰ)由年销售量为a台,按利润的计算公式求得利润,再由利润大于等于0,分离参数a求解;(Ⅱ)分别写出投资生产甲、乙两种工业设备的利润函数,由函数的单调性及二次函数的性质求函数的最大值,然后作出比较得答案【题目详解】(Ⅰ)由年销售a台甲设备,公司年获利y1=50a-100-am,由y1=50a-100-am≥0(30≤m≤40),得a≥(30≤m≤40),函数f(m)=在[30,40]上为增函数,则f(m)max=10,∴a≥10则对任意m∈[30,40],公司投资生产都不会赔本,a的值为10台;(Ⅱ)由年销售量为x台,按利润的计算公式,有生产甲、乙两设备的年利润y1,y2分别为:y1=50x-(100+mx)=(50-m)x-100,0≤x≤200且x∈Ny2=90x-(200+40x)-0.25x2=-0.25x2+50x-200=-0.25(x-100)2+2300,0≤x≤120,x∈N∵30≤m≤40,∴50-m>0,∴y1=(50-m)x-100为增函数,又∵0≤x≤200,x∈N,∴x=200时,生产甲设备的最大年利润为(50-m)×200-100=9900-200m(万元)又y2=-0.25(x-100)2+2300,0≤x≤120,x∈N∴x=100时,生产乙设备的最大年利润为2300(万元)(y1)max-(y2)max=(9900-200m)-2300=7600-200m当30≤m<38时,7600-200m>0,当m=38时,7600-200m=0,当38<m<40时,7600-200m<0,故当30≤m<38时,投资生产甲设备200台可获最大年利润;当m=38时,生产甲设备与生产乙设备均可获得最大年利润;当38<m<40时,投资生产乙设备100台可获最大年利润【题目点拨】考查根据实际问题抽象函数模型的能力,并能根据模型的解决,指导实际生活中的决策问题,属中档题19、(1),;(2);(3)【解题分析】(1)由已知中函数,,当时,恒有,我们可以构造一个关于方程组,解方程组求出的值,进而得到的表达式;(2)转化为,解得,可求出满足条件的实数的取值范围.(3)根据对数的运算性质,转化为一个关于的分式方程组,进而根据方程的解集为,则方程组至少一个方程无解或两个方程的解集的交集为空集,分类讨论后,即可得到答案.【题目详解】(1)∵当时,,即,即,整理得恒成立,∴,又,即,从而∴,∵,∴,或,∴的定义域为(2)方程有解,即,∴,∴,∴,∴,或,解得或,∴实数的取值范围(3)方程的解集为,∴,∴,∴,方程的解集为,故有两种情况:①方程无解,即,得,②方程有解,两根均在内,,则解得综合①②得实数的取值范围是【题目点拨】关键点点睛:函数与方程、对数函数的单调性解不等式以及一元二次方程根的分布,综合性比较强,根据转化思想,不断转化是解题的关键,考查了分类讨论的思想,属于难题.20、(1)见解析;(2)【解题分析】(1)在平面图形内找到,则在立体图形中,可证面.(2)解法一:根据平面平面,得到平面,得到到平面的距离,根据平面图形求出底面平的面积,求得三棱锥的体积.解法二:找到三棱锥的体积与四棱锥的体积之间的关系比值关系,先求四棱锥的体积,从而得到三棱锥的体积.【题目详解】证明:如图1,中,所以.所以也是直角三角形,,如图题2,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 标准暂缓就业协议
- 2024年个人融资合同样本
- 2024员工股权激励计划协议书
- 整车运输合作协议模板
- 2024年司法考试培训合作合同模板
- 农村私人住宅土地租赁合同
- 房屋买卖合同全文模板
- 旧机器销售合同样本
- 房产中介加盟合同范本
- 房屋建筑施工合同模板示例
- 风电场地质勘察设计方案
- 特种设备使用登记表(范本)
- (完整版)5以内的加减法(可直接打印)
- 横河UT35A-32A-操作手册
- 计算机网络(第三版)课件(完整版)
- 新疆准东经济技术开发区西部固废处置场项目环评报告书
- GB∕T 36008-2018 机器人与机器人装备 协作机器人
- 《红楼梦》指导第二课 命名
- (新版)保卫管理员考试题库(含答案)
- 关于建立企业干部职工末等调整和不胜任退出机制的实施方案
- 水利工程工程量清单计价解读讲解课件
评论
0/150
提交评论