2024届昌都市重点中学高一上数学期末学业质量监测试题含解析_第1页
2024届昌都市重点中学高一上数学期末学业质量监测试题含解析_第2页
2024届昌都市重点中学高一上数学期末学业质量监测试题含解析_第3页
2024届昌都市重点中学高一上数学期末学业质量监测试题含解析_第4页
2024届昌都市重点中学高一上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届昌都市重点中学高一上数学期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则()A.﹣1 B.C. D.32.直线过点且与以点为端点的线段恒相交,则的斜率取值范围是().A. B.C. D.3.已知点P(cosα,sinα),Q(cosβ,sinβ),则的最大值是()A. B.2C.4 D.4.函数f(x)=log3x-8+2x的零点一定位于区间A. B.C. D.5.设函数与的图象的交点为,则所在的区间为()A B.C. D.6.某学校大门口有一座钟楼,每到夜晚灯光亮起都是一道靓丽的风景,有一天因停电导致钟表慢10分钟,则将钟表拨快到准确时间分针所转过的弧度数是()A. B.C. D.7.下列函数中,既是偶函数又在区间上单调递增的函数是A. B.C. D.8.已知在△ABC中,cos=-,那么sin+cosA=()A. B.-C. D.9.不等式的解集为,则函数的图像大致为()A. B.C. D.10.命题“,是4倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4倍数 D.,不是4的倍数二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合(1)当时,求的非空真子集的个数;(2)当时,若,求实数的取值范围12.经过原点并且与直线相切于点的圆的标准方程是__________13.已知向量不共线,,若,则___14.如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=AB,则下列结论正确的是_____.(填序号)①PB⊥AD;②平面PAB⊥平面PBC;③直线BC∥平面PAE;④sin∠PDA15.函数的反函数是___________.16.若m,n满足m2+5m-3=0,n2+5n-3=0,且m≠n,则的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示.(1)写出函数f(x)的最小正周期T及ω、φ的值;(2)求函数f(x)在区间上的最大值与最小值.18.已知函数,函数的最小正周期为.(1)求函数的解析式,及当时,的值域;(2)当时,总有,使得,求实数m的取值范围.19.如图,一个半径为4米的筒车按逆时针方向每分钟转1圈,筒车的轴心O距水面的高度为2米.设筒车上的某个盛水筒W到水面的距离为d(单位:米)(在水面下则d为负数).若以盛水筒W刚浮出水面时开始计算时间,则d与时间t(单位:分钟)之间的关系为.(1)求的值;(2)求盛水筒W出水后至少经过多少时间就可到达最高点?(3)某时刻(单位:分钟)时,盛水筒W在过O点的竖直直线的左侧,到水面的距离为5米,再经过分钟后,盛水筒W是否在水中?20.某国际性会议纪念章的一特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向该会议的组织委员会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时,该店一年可销售2000枚,经过市场调研发现,每枚纪念章的销售价格在每枚20元的基础上,每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元(每枚的销售价格应为正整数).(1)写出该特许专营店一年内销售这种纪念章所获得的利润(元)与每枚纪念章的销售价格的函数关系式;(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出这个最大值;21.已知向量(1)当时,求的值;(2)若为锐角,求的范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】先计算,再代入计算得到答案.【题目详解】,则故选:【题目点拨】本题考查了分段函数的计算,意在考查学生的计算能力.2、D【解题分析】详解】∵∴根据如下图形可知,使直线与线段相交的斜率取值范围是故选:D.3、B【解题分析】,则,则的最大值是2,故选B.4、B【解题分析】根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理5、C【解题分析】令,则,故的零点在内,因此两函数图象交点在内,故选C.【方法点睛】本题主要考查函数图象的交点与函数零点的关系、零点存在定理的应用,属于中档题.零点存在性定理的条件:(1)利用定理要求函数在区间上是连续不断的曲线;(2)要求;(3)要想判断零点个数还必须结合函数的图象与性质(如单调性、奇偶性).6、A【解题分析】由题可得分针需要顺时针方向旋转.【题目详解】分针需要顺时针方向旋转,即弧度数为.故选:A.7、D【解题分析】选项A为偶函数,但在区间(0,+∞)上单调递减;选项B,y=x3为奇函数;选项C,y=cosx为偶函数,但在区间(0,+∞)上没有单调性;选项D满足题意【题目详解】选项A,y=ln为偶函数,但在区间(0,+∞)上单调递减,故错误;选项B,y=x3为奇函数,故错误;选项C,y=cosx为偶函数,但在区间(0,+∞)上没有单调性,故错误;选项D,y=2|x|为偶函数,当x>0时,解析式可化为y=2x,显然满足在区间(0,+∞)上单调递增,故正确故选D【题目点拨】本题考查函数的奇偶性和单调性,属于基础题8、B【解题分析】因为cos=-,即cos=-,所以sin=-,则sin+cosA=sinAcos+cosAsin+cosA=sin=-.故选B.9、C【解题分析】根据不等式的解集求出参数,从而可得,根据该形式可得正确的选项【题目详解】因为不等式的解集为,故,故,故,令,解得或,故抛物线开口向下,与轴的交点的横坐标为,故选:C10、B【解题分析】根据特称量词命题的否定是全称量词命题即可求解【题目详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、(1)30(2)或【解题分析】(1)当时,可得中元素的个数,进而可得的非空真子集的个数;(2)根据,可分和两种情况讨论,可得出实数的取值范围【小问1详解】当时,,共有5个元素,所以的非空真子集的个数为【小问2详解】(1)当时,,解得;(2)当时,根据题意作出如图所示的数轴,可得或解得:或综上可得,实数的取值范围是或12、【解题分析】设圆心坐标,则,,,根据这三个方程组可以计算得:,所以所求方程为:点睛:设出圆心与半径,根据题意列出方程组,解出圆心和半径即可13、【解题分析】由,将表示为的数乘,求出参数【题目详解】因为向量不共线,,且,所以,即,解得【题目点拨】向量与共线,当且仅当有唯一一个实数,使得14、④【解题分析】由题意,分别根据线面位置关系的判定定理和性质定理,逐项判定,即可得到答案.【题目详解】∵PA⊥平面ABC,如果PB⊥AD,可得AD⊥AB,但是AD与AB成60°,∴①不成立,过A作AG⊥PB于G,如果平面PAB⊥平面PBC,可得AG⊥BC,∵PA⊥BC,∴BC⊥平面PAB,∴BC⊥AB,矛盾,所以②不正确;BC与AE是相交直线,所以BC一定不与平面PAE平行,所以③不正确;在Rt△PAD中,由于AD=2AB=2PA,∴sin∠PDA,所以④正确;故答案为:④【题目点拨】本题考查线面位置关系判定与证明,考查线线角,属于基础题.熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.15、;【解题分析】根据指数函数与对数函数互为反函数直接求解.【题目详解】因为,所以,即的反函数为,故答案为:16、【解题分析】由题可知是方程的两个不同实根,根据韦达定理可求出.【题目详解】由题可知是方程的两个不同实根,则,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2)最小值为,最大值为1.【解题分析】(1)由函数的部分图象求解析式,由周期求出,代入求出的值,可得函数的解析式;(2)由以上可得,,再利用正弦函数的定义域和值域,求得函数的最值.【题目详解】(1)根据函数的部分图象,可得,解得,,将代入可得,解得;(2)由以上可得,,,,,当时,即,函数取得最小值为.当时,即,函数取得最大值为1.【题目点拨】本题考查三角函数部分图象求解析式,考查三角函数给定区间的最值,属于基础题.18、(1),值域为(2)【解题分析】(1)由正弦函数的周期求得得解析式,利用正弦函数的性质可得函数值域;(2)利用时,的值域是集合的子集,分类讨论求得的最大值和最小值,得出不等关系,从而得出结论【小问1详解】,.因为,所以,所以的值域为.【小问2详解】当时,总有,使得,即时,函数的值域是的子集,即当时,.函数,其对称轴,开口向上.当时,即,可得,,所以,解得;当即时,在上单调递减,在上单调递增;所以,所以.当时,即,可得,,所以,此时无解.综上可得实数m的取值范围为.19、(1);(2)分钟;(3)再经过分钟后盛水筒不在水中.【解题分析】(1)先结合题设条件得到,,求得,再利用初始值计算初相即可;(2)根据盛水筒达到最高点时,代入计算t值,再根据,得到最少时间即可;(3)先计算时,根据题意,利用同角三角函数的平方关系求,再由分钟后,进而计算d值并判断正负,即得结果.【题目详解】解:(1)由题意知,,即,所以,由题意半径为4米,筒车的轴心O距水面的高度为2米,可得:,当时,,代入得,,因为,所以;(2)由(1)知:,盛水筒达到最高点时,,当时,,所以,所以,解得,因为,所以,当时,,所以盛水筒出水后至少经过分钟就可达到最高点;(3)由题知:,即,由题意,盛水筒W在过O点的竖直直线的左侧,知,所以,所以,所以,再经过分钟后,所以再经过分钟后盛水筒不在水中.【题目点拨】本题的解题关键在于准确求解出三角函数模型的解析式,才能利用三角函数性质解决实际问题,突破难点.20、(1);(2),.【解题分析】(1)根据题意列函数关系式即可,需注意,当时,由题意不生产纪念章,故;(2)利用配方法分别求解不同条件下的最值,并进行比较即可,需注意每枚的销售价格应为正整数【题目详解】(1)依题意,得,整理可得(2)由(1)可得,当时,则当时,;当时,则当或时,;因为,则当时,【题目点拨】本题考查函数关系式在生活中的应用,考查配方法求最值,实际应用中要注意自变量的取值范围21、(1)x或x=﹣2;(2)x>﹣2且x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论