2024届福建省龙岩市龙岩九中高一上数学期末复习检测试题含解析_第1页
2024届福建省龙岩市龙岩九中高一上数学期末复习检测试题含解析_第2页
2024届福建省龙岩市龙岩九中高一上数学期末复习检测试题含解析_第3页
2024届福建省龙岩市龙岩九中高一上数学期末复习检测试题含解析_第4页
2024届福建省龙岩市龙岩九中高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省龙岩市龙岩九中高一上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设、、依次表示函数,,的零点,则、、的大小关系为()A. B.C. D.2.若函数的定义域为R,则下列函数必为奇函数的是()A. B.C. D.3.已知a,b,c,d均为实数,则下列命题正确的是()A.若,,则B.若,,则C.若,则D.若,则4.定义在R上的函数满足,且当时,,,若任给,存在,使得,则实数a的取值范围为().A. B.C. D.5.函数的部分图象如图,则()A. B.C. D.6.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”,计费方法如下表:每户每月用水量水价不超过12m3的部分3元/m3超过12m3但不超过18m3的部分6元/m3超过18m3的部分9元/m3若某户居民本月缴纳的水费为90元,则此户居民本月的用水量为()A.17 B.18C.19 D.207.已知向量,,则向量与的夹角为()A. B.C. D.8.酒驾是严重危害交通安全的违法行为.根据国家有关规定:驾驶人血液中的酒精含量大于(或等于)毫克/毫升,小于毫克/毫升的情况下驾驶机动车属于饮酒驾车;含量大于(或等于)毫克/毫升的情况下驾驶机动车属于醉酒驾车.假设某驾驶员一天晚上点钟喝了一定量的酒后,其血液中酒精含量上升到毫克/毫升.如果在停止喝酒后,他血液中酒精含量以每小时的速度减少,则他次日上午最早()点(结果取整数)开车才不构成酒驾.(参考数据:,)A. B.C. D.9.经过点(2,1)的直线l到A(1,1),B(3,5)两点的距离相等,则直线l的方程为A.2x-y-3=0 B.x=2C.2x-y-3=0或x=2 D.都不对10.已知是定义在上的偶函数,那么的最大值是()A.0 B.C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知在同一平面内,为锐角,则实数组成的集合为_________12.已知某扇形的半径为,面积为,那么该扇形的弧长为________.13.设集合,,若,则实数的取值范围是________14.设平行于轴的直线分别与函数和的图像相交于点,,若在函数的图像上存在点,使得为等边三角形,则点的纵坐标为_________.15.函数的定义域为____16.已知弧长为cm2的弧所对的圆心角为,则这条弧所在的扇形面积为_____cm2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,或(1)若,求a取值范围;(2)若,求a的取值范围18.已知是小于9的正整数,,,求(1)(2)(3)19.已知函数(Ⅰ)求函数的最小正周期(Ⅱ)求函数在上的最大值与最小值20.已知函数且图象经过点(1)求实数的值;(2)若,求实数的取值范围.21.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上最大值为3,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据题意可知,的图象与的图象的交点的横坐标依次为,作图可求解.【题目详解】依题意可得,的图象与的图象交点的横坐标为,作出图象如图:由图象可知,,故选:D【题目点拨】本题主要考查了幂函数、指数函数、对数函数的图象,函数零点,数形结合的思想,属于中档题.2、C【解题分析】根据奇偶性的定义判断可得答案.【题目详解】,由得是偶函数,故A错误;,由得是偶函数,故B错误;,由得是奇函数,故C正确;,由得是偶函数,故D错误;故选:C.3、B【解题分析】利用不等式的性质逐项判断可得出合适的选项.【题目详解】对于A选项,若,,则,故,A错;对于B选项,若,,则,所以,,故,B对;对于C选项,若,则,则,C错;对于D选项,若,则,所以,,D错.故选:B.4、D【解题分析】求出在,上的值域,利用的性质得出在,上的值域,再求出在,上的值域,根据题意得出两值域的包含关系,从而解出的范围【题目详解】解:当时,,可得在,上单调递减,在上单调递增,在,上的值域为,,在上的值域为,,在上的值域为,,,,在上的值域为,,当时,为增函数,在,上的值域为,,,解得;当时,为减函数,在,上的值域为,,,解得;当时,为常数函数,值域为,不符合题意;综上,的范围是或故选:【题目点拨】本题考查了分段函数的值域计算,集合的包含关系,对于不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则值域是值域的子集5、C【解题分析】先利用图象中的1和3,求得函数的周期,求得,最后根据时取最大值1,求得,即可得解【题目详解】解:根据函数的图象可得:函数的周期为,∴,当时取最大值1,即,又,所以,故选:C【题目点拨】本题主要考查了由的部分图象确定其解析式,考查了五点作图的应用和图象观察能力,属于基本知识的考查.属于基础题.6、D【解题分析】根据给定条件求出水费与水价的函数关系,再由给定函数值计算作答.【题目详解】依题意,设此户居民月用水量为,月缴纳的水费为y元,则,整理得:,当时,,当时,,因此,由得:,解得,所以此户居民本月的用水量为.故选:D7、C【解题分析】结合平面向量线性运算的坐标表示求出,然后代入模长公式分别求出和,进而根据平面向量的夹角公式即可求出夹角的余弦值,进而求出结果.【题目详解】,,,,从而,且,记与的夹角为,则又,,故选:8、D【解题分析】根据题意可得不等式,解不等式可求得,由此可得结论.【题目详解】假设经过小时后,驾驶员开车才不构成酒驾,则,即,,则,,次日上午最早点,该驾驶员开车才不构成酒驾.故选:D.9、C【解题分析】当直线l的斜率不存在时,直线x=2显然满足题意;当直线l的斜率存在时,设直线l的斜率为k则直线l为y-1=kx-2,即由A到直线l的距离等于B到直线l的距离得:-kk化简得:-k=k-4或k=k-4(无解),解得k=2∴直线l的方程为2x-y-3=0综上,直线l的方程为2x-y-3=0或x=2故选C10、C【解题分析】∵f(x)=ax2+bx是定义在[a-1,2a]上偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】分析:根据夹角为锐角得向量数量积大于零且向量不共线,解得实数组成的集合.详解:因为为锐角,所以且不共线,所以因此实数组成的集合为,点睛:向量夹角为锐角的充要条件为向量数量积大于零且向量不共线,向量夹角为钝角的充要条件为向量数量积小于零且向量不共线.12、【解题分析】根据扇形面积公式可求得答案.【题目详解】设该扇形的弧长为,由扇形的面积,可得,解得.故答案.【题目点拨】本题考查了扇形面积公式的应用,考查了学生的计算能力,属于基础题.13、【解题分析】对于方程,由于,解得集合,由,根据区间端点值的关系列式求得的范围【题目详解】解:对于,由于,,,;∴∵,集合,∴解得,,则实数的取值范围是故答案为:14、【解题分析】设直线的方程为,求得点,坐标,得到,取的中点,连接,根据三角形为等边三角形,表示出点坐标,根据点在函数的图象上,得到关于的方程,求出,进而可得点的纵坐标.【题目详解】设直线的方程为,由,得,所以点,由,得,所以点,从而,如图,取的中点,连接,因为为等边三角形,则,所以,,则点,因为点在函数的图象上,则,解得,所以点的纵坐标为.故答案为:.【题目点拨】关键点点睛:求解本题的关键在于先由同一参数表示出点坐标,再代入求解;本题中,先设直线,分别求出,坐标,得到等边三角形的边长,由此用表示出点坐标,即可求解.15、【解题分析】本题首先可以通过分式的分母不能为以及根式的被开方数大于等于来列出不等式组,然后通过计算得出结果【题目详解】由题意可知,解得或者,故定义域为【题目点拨】本题考查函数的定义域的相关性质,主要考查函数定义域的判断,考查计算能力,考查方程思想,是简单题16、【解题分析】先求出半径,再用扇形面积公式求解即可.【题目详解】由已知半径为,则这条弧所在的扇形面积为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据交集的定义,列出关于的不等式组即可求解;(2)由题意,,根据集合的包含关系列出关于的不等式组即可求解;【小问1详解】解:∵或,且,∴,解得,∴a的取值范围为;【小问2详解】解:∵或,且,∴,∴或,即或,∴a的取值范围是.18、(1)(2)(3)【解题分析】(1)根据交集概念求解即可.(2)根据并集概念求解即可.(3)根据补集和并集概念求解即可.【小问1详解】,,.【小问2详解】,,.【小问3详解】,,,.19、(1)(2)最大值1,最小值0【解题分析】(1)先利用二倍角正余弦公式以及配角公式将函数化为基本三角函数,再根据正弦函数性质求最小正周期.(2)先根据,得正弦函数取值范围,再求函数最值试题解析:(Ⅰ)∴的最小正周期(Ⅱ)∵,∴,∴,∴,即:当且仅当时,取最小值,当且仅当,即时,取最大值,点睛:三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征20、(1)3(2)【解题分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论