安徽省宣城市郎溪县七校2024届高一上数学期末教学质量检测模拟试题含解析_第1页
安徽省宣城市郎溪县七校2024届高一上数学期末教学质量检测模拟试题含解析_第2页
安徽省宣城市郎溪县七校2024届高一上数学期末教学质量检测模拟试题含解析_第3页
安徽省宣城市郎溪县七校2024届高一上数学期末教学质量检测模拟试题含解析_第4页
安徽省宣城市郎溪县七校2024届高一上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宣城市郎溪县七校2024届高一上数学期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,四面体中,,且,分别是的中点,则与所成的角为A. B.C. D.2.已知函数的部分图象如图所示,则将的图象向左平移个单位后,得到的图象对应的函数解析式为()A. B.C. D.3.已知平面直角坐标系中,点,,,、、,,是线段AB的九等分点,则()A.45 B.50C.90 D.1004.若,且,则()A. B.C. D.5.函数的定义域是()A. B.C. D.6.已知函数在上图像关于轴对称,若对于,都有,且当时,,则的值为()A. B.C. D.7.三个数大小的顺序是A. B.C. D.8.已知函数fx①fx的定义域是-②fx③fx在区间(0,+④fx的图像与gx=1其中正确的结论是()A.①② B.③④C.①②③ D.①②④9.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-210.对,不等式恒成立,则a的取值范围是()A. B.C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.利用随机数表法对一个容量为90,编号为00,01,02,…,89的产品进行抽样检验,抽取一个容量为10的样本,若选定从第2行第3列的数开始向右读数(下面摘取了随机数表中的第1行至第5行),根据下图,读出的第3个数是___________.12.若函数(其中)在区间上不单调,则的取值范围为__________.13.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.14.已知向量,满足=(3,-4),||=2,|+|=,则,的夹角等于______15.若将函数的图像向左平移个单位后所得图像关于轴对称,则的最小值为___________.16.计算:______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.一几何体按比例绘制的三视图如图所示(单位:).(1)试画出它的直观图(不写作图过程);(2)求它的表面积和体积.18.已知,,且(1)求的定义域.(2)判断的奇偶性,并说明理由.19.定义在D上的函数,如果满足:存在常数,对任意,都有成立,则称是D上的有界函数,其中M称为函数的上界.(1)证明:在上有界函数;(2)若函数在上是以3为上界的有界函数,求实数a的取值范围.20.已知集合,集合(1)当时,求;(2)若,求实数的取值范围在①;②“”是“”的充分条件;③这三个条件中任选一个,补充到本题第(2)问的横线处,并解答注:如果选择多个条件分别解答,按第一个解答计分21.已知向量,,且,满足关系.(1)求向量,的数量积用k表示的解析式;(2)求向量与夹角的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】设为中点,由中位线可知,所以就是所求两条之间所成的角,且三角形为等腰直角三角形你给,所以.考点:空间两条直线所成的角.【思路点晴】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决2、C【解题分析】根据给定图象求出函数的解析式,再平移,代入计算作答.【题目详解】观察图象得,令函数周期为,有,解得,则,而当时,,则有,又,则,因此,,将的图象向左平移个单位得:,所以将的图象向左平移个单位后,得到的图象对应的函数解析式为.故选:C3、B【解题分析】利用向量的加法以及数乘运算可得,再由向量模的坐标表示即可求解.【题目详解】,∴故选:B.4、D【解题分析】根据给定条件,将指数式化成对数式,再借助换底公式及对数运算法则计算即得.【题目详解】因为,于是得,,又因为,则有,即,因此,,而,解得,所以.故选:D5、D【解题分析】由函数解析式有意义可得出关于实数的不等式组,由此可求得原函数的定义域.【题目详解】函数有意义,只需且,解得且因此,函数的定义域为.故选:D.6、C【解题分析】据条件即可知为偶函数,并且在,上是周期为2的周期函数,又,时,,从而可得出,,从而找出正确选项【题目详解】解:函数在上图象关于轴对称;是偶函数;又时,;在,上为周期为2的周期函数;又,时,;,;故选:【题目点拨】考查偶函数图象的对称性,偶函数的定义,周期函数的定义,以及已知函数求值,属于中档题7、B【解题分析】根据指数函数和对数函数的单调性知:,即;,即;,即;所以,故正确答案为选项B考点:指数函数和对数函数的单调性;间接比较法8、D【解题分析】可根据已知的函数解析式,通过求解函数的定义域、奇偶性、单调性和与gx=【题目详解】函数fx=x②选项,因为fx=x选项③,在区间0,+∞时,fx=xx2+1=1x+1x,而函数选项④,可通过画出fx的图像与gx=1故选:D.9、D【解题分析】由奇函数定义得,从而求得,然后由计算【题目详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【题目点拨】本题考查奇函数的定义,掌握奇函数的概念是解题关键10、A【解题分析】对讨论,结合二次函数的图象与性质,解不等式即可得到的取值范围.【题目详解】不等式对一切恒成立,当,即时,恒成立,满足题意;当时,要使不等式恒成立,需,即有,解得.综上可得,的取值范围为.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、75【解题分析】根据随机数表法进行抽样即可.【题目详解】从随机数表的第2行第3列的数开始向右读数,第一个编号为62,符合;第二个编号为38,符合;第三个编号为97,大于89,应舍去;下一个编号为75,符合.所以读出的第3个数是:75.故答案为:75.12、【解题分析】化简f(x),结合正弦函数单调性即可求ω取值范围.【题目详解】,x∈,①ω>0时,ωx∈,f(x)在不单调,则,则;②ω<0时,ωx∈,f(x)在不单调,则,则;综上,ω的取值范围是.故答案为:.13、【解题分析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【题目详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.14、【解题分析】利用求解向量间的夹角即可【题目详解】因为,所以,因为,所以,即,所以,所以,因为向量夹角取值范围是,所以向量与向量的夹角为【题目点拨】本题考查向量的运算,这种题型中利用求解向量间的夹角同时需注意15、【解题分析】利用辅助角公式将函数化简,再根据三角函数的平移变换及余弦函数的性质计算可得;【题目详解】解:因,将的图像向左平移个单位,得到,又关于轴对称,所以,,所以,所以当时取最小值;故答案为:16、【解题分析】利用指数幂和对数的运算性质可计算出所求代数式的值.【题目详解】原式.故答案为:.【题目点拨】本题考查指数与对数的计算,考查指数幂与对数运算性质的应用,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)直观图见解析;(2),.【解题分析】(1)由三视图直接画出它的直观图即可;(2)由三视图可知该几何体是长方体被截取一个角,分别计算其表面积和体积可得答案.【题目详解】解:(1)直观图如图所示.(2)由三视图可知该几何体是长方体被截取一个角,且该几何体的体积是以,,为棱的长方体的体积的.在直角梯形中,作,则是正方形,∴.在中,,,∴.∴.∴几何体的体积.∴该几何体的表面积为,体积为.【题目点拨】本题主要考查空间几何体的三视图与直观图、空间几何体的表面积与体积,考查学生的直观想象能力,数学计算能力,属于中档题.18、(1);(2)偶函数,理由见解析.【解题分析】(1)根据对数的真数大于零可求得和的定义域,取交集可得定义域;(2)整理可得,验证得,得到函数为偶函数.【题目详解】(1)令得:定义域为令得:定义域为的定义域为(2)由题意得:,为定义在上的偶函数【题目点拨】本题考查函数定义域的求解、奇偶性的判断;求解函数定义域的关键是明确对数函数要求真数必须大于零,且需保证构成函数的每个部分都有意义.19、(1)证明见解析(2)【解题分析】(1)根据,利用求解单调性求解;(2)根据在上是以3为上界的有界函数,令,则,转化,在时恒成立求解.【小问1详解】解:,则在上是严格增函数,故,即,故,故是有界函数;【小问2详解】因为在上是以3为上界的有界函数,所以在上恒成立,令,则,所以在时恒成立,所以,在时恒成立,函数在上严格递减,所以;函数在上严格递增,所以.所以实数a的取值范围是.20、(1)或(2)【解题分析】(1)根据集合的补集与交集定义运算即可;(2)选①②③中任何一个,都可以转化为,讨论与求解即可【小问1详解】化简集合有当时,,则或故或【小问2详解】选①②③中任何一个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论