2024届黑龙江安达市育才高中高一数学第一学期期末综合测试试题含解析_第1页
2024届黑龙江安达市育才高中高一数学第一学期期末综合测试试题含解析_第2页
2024届黑龙江安达市育才高中高一数学第一学期期末综合测试试题含解析_第3页
2024届黑龙江安达市育才高中高一数学第一学期期末综合测试试题含解析_第4页
2024届黑龙江安达市育才高中高一数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江安达市育才高中高一数学第一学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,则等于()A. B.3C. D.2.将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,这样的分割被称为黄金分割,黄金分割蕴藏着丰富的数学知识和美学价值,被广泛运用于艺术创作、工艺设计等领域.黄金分制的比值为无理数,该值恰好等于,则()A. B.C. D.3.在空间直角坐标系中,一个三棱锥的顶点坐标分别是,,,.则该三棱锥的体积为()A. B.C. D.24.“x=1”是“x2-4x+3=0”的A.充分不必要条件B必要不充分条件C.充要条件D.既不充分也不必要条件5.为了得到函数的图像,只需将函数的图像()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位6.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.7.下列函数中与函数相等的是A. B.C. D.8.设m,n为两条不同的直线,,为两个不同的平面,则下列结论正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则9.若关于的函数的最大值为,最小值为,且,则实数的值为()A.2020 B.2019C.1009 D.101010.若函数是定义域为的奇函数,且当时,,则当时,()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合(1)当时,求的非空真子集的个数;(2)当时,若,求实数的取值范围12.已知函数集合,若集合中有3个元素,则实数的取值范围为________13.已知函数,则的单调递增区间是______14.设平面向量,,则__________.若与的夹角为钝角,则的取值范围是__________15.直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为____________16.已知,,向量与的夹角为,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.(1)求证:DE平面ABC;(2)求证:B1C⊥平面BDE.18.已知函数.(1)求函数的最小正周期及其单调递减区间;(2)若,是函数的零点,不写步骤,直接用列举法表示的值组成的集合.19.已知函数为奇函数(1)求的值;(2)判断的单调性,并用定义证明;(3)解不等式20.已知函数(Ⅰ)求的最小正周期及对称轴方程;(Ⅱ)当时,求函数的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值.21.已知.(1)求的值;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据已知确定,从而求得,进而求得,根据诱导公式即求得答案.【题目详解】因为,,所以,则,故,故选:A2、C【解题分析】根据余弦二倍角公式即可计算求值.【题目详解】∵=,∴,∴.故选:C.3、A【解题分析】由题,在空间直角坐标系中找到对应的点,进而求解即可【题目详解】由题,如图所示,则,故选:A【题目点拨】本题考查三棱锥的体积,考查空间直角坐标系的应用4、A【解题分析】将代入可判断充分性,求解方程可判断必要性,即可得到结果.【题目详解】将代入中可得,即“”是“”的充分条件;由可得,即或,所以“”不是“”的必要条件,故选:A.【题目点拨】本题考查充分条件和必要条件的判定,属于基础题.5、A【解题分析】根据函数平移变换的方法,由即,只需向右平移个单位即可.【题目详解】根据函数平移变换,由变换为,只需将的图象向右平移个单位,即可得到的图像,故选A.【题目点拨】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.6、B【解题分析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【题目详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.7、C【解题分析】对于选项A,D对应的函数与函数的对应法则不同,对于选项B对应的函数与函数的定义域不同,对于选项C对应的函数与函数的定义域、对应法则相同,得解.【题目详解】解:对于选项A,等价于,即A不符合题意,对于选项B,等价于,即B不符合题意,对于选项C,等价于,即C符合题意,对于选项D,,显然不符合题意,即D不符合题意,故选C.【题目点拨】本题考查了同一函数的判断、函数的对应法则及定义域,属基础题.8、D【解题分析】根据线面的位置关系可判断A;举反例判断B、C;由面面垂直的判定定理可判断D,进而可得正确选项.详解】对于A:若,,则或,故选项A不正确;对于B:如图平面为平面,平面为平面,直线为,直线为,满足,,,但与相交,故选项B不正确;对于C:如图在正方体中,平面为平面,平面为平面,直线为,直线为,满足,,,则,故选项C不正确;对于D:若,,可得或,若,因为,由面面垂直的判定定理可得;若,可过作平面与相交,则交线在平面内,且交线与平行,由可得交线与垂直,由面面垂直的判定定理可得,故选项D正确;故选:D.9、D【解题分析】化简函数,构造函数,再借助函数奇偶性,推理计算作答.【题目详解】依题意,当时,,,则,当时,,,即函数定义域为R,,令,,显然,即函数是R上的奇函数,依题意,,,而,即,而,解得,所以实数的值为.故选:D10、D【解题分析】设,由奇函数的定义可得出,即可得解.【题目详解】当时,,由奇函数的定义可得.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、(1)30(2)或【解题分析】(1)当时,可得中元素的个数,进而可得的非空真子集的个数;(2)根据,可分和两种情况讨论,可得出实数的取值范围【小问1详解】当时,,共有5个元素,所以的非空真子集的个数为【小问2详解】(1)当时,,解得;(2)当时,根据题意作出如图所示的数轴,可得或解得:或综上可得,实数的取值范围是或12、或【解题分析】令,记的两根为,由题知的图象与直线共有三个交点,从而转化为一元二次方程根的分布问题,然后可解.【题目详解】令,记的零点为,因为集合中有3个元素,所以的图象与直线共有三个交点,则,或或当时,得,,满足题意;当时,得,,满足题意;当时,,解得.综上,t的取值范围为或.故答案为:或13、【解题分析】函数是由和复合而成,分别判断两个函数的单调性,根据复合函数的单调性同增异减即可求解.【题目详解】函数是由和复合而成,因为为单调递增函数,对称轴为,开口向上,所以在上单调递减,在上单调递增,所以在上单调递减,在上单调递增,所以的单调递增区间为,故答案为:.14、①.②.【解题分析】(1)由题意得(2)∵与的夹角为钝角,∴,解得又当时,向量,共线反向,满足,但此时向量的夹角不是钝角,故不合题意综上的取值范围是答案:;15、x+3y-5=0或x=-1【解题分析】当直线l为x=﹣1时,满足条件,因此直线l方程可以为x=﹣1当直线l的斜率存在时,设直线l的方程为:y﹣2=k(x+1),化为:kx﹣y+k+2=0,则,化为:3k﹣1=±(3k+3),解得k=﹣∴直线l的方程为:y﹣2=﹣(x+1),化为:x+3y﹣5=0综上可得:直线l的方程为:x+3y﹣5=0或x=﹣1故答案为x+3y﹣5=0或x=﹣116、1【解题分析】由于.考点:平面向量数量积;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明过程见解析;(2)证明过程见解析.【解题分析】(1)根据面面平行的判定定理,结合线面平行的判定定理、面面平行的性质进行证明即可;(2)根据正三棱柱的几何性质,结合面面垂直的性质定理、线面垂直的判定定理、面面平行的性质定理进行证明即可.【小问1详解】设G是CC1的中点,连接,因为E为B1C的中点,所以,而,所以,因为平面ABC,平面ABC,所以平面ABC,同理可证平面ABC,因为平面,且,所以面平面ABC,而平面,所以DE平面ABC;【小问2详解】设是的中点,连接,因为E为B1C的中点,所以,而,所以,由(1)可知:面平面ABC,平面平面,平面平面,因此,在正三棱柱ABC-A1B1C1中,平面平面ABC,而平面平面ABC,因为ABC是正三角形,是的中点,所以,因此平面,而平面,因此,而,所以,因为正三棱柱ABC-A1B1C1中棱长都相等,所以,而E分别为B1C的中点,所以,而平面BDE,,所以B1C⊥平面BDE.18、(1)的最小正周期为,单调递减区间是(2)【解题分析】(1)根据正弦函数的最小正周期公式计算可得,根据正弦函数的单调性求出函数的单调区间.(2)先求出函数的零点,是或中的元素,在分类讨论计算可得.【小问1详解】的最小正周期为:对于函数,当时,单调递减,解得所以函数的单调递减区间是;【小问2详解】因,即所以函数的零点满足:或即或所以是或中的元素当时,则当(或,)时,则当,则所以的值的集合是19、(1)(2)单调递减,证明见解析(3)【解题分析】(1)根据奇函数性质求解即可;(2)根据定义法严格证明单调性,注意式子正负的判断即可求解;(3)根据奇函数性质化简不等式得,再根据函数单调性得到,代入函数解不等式即可求解.【小问1详解】因为为奇函数且的定义域为,所以由奇函数性质得,解得,当时,,,即,符合题意.【小问2详解】在上单调递减,证明如下:由(1)知,,,时,,因为,所以,,所以,即在上单调递减【小问3详解】因为,所以,因为为奇函数,,所以,又因为在上单调递减,所以,即,所以,即,解得,即不等式的解集为20、(Ⅰ)最小正周期是,对称轴方程为;(Ⅱ)时,函数取得最小值,最小值为-2,时,函数取得最大值,最大值为1.【解题分析】(Ⅰ)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质求出对称轴及最小正周期;(Ⅱ)由的取值范围,求出的取值范围,再根据正弦函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论