




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西南宁市三中2024届高一上数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆内接四边形是矩形2.若集合,集合,则()A.{5,8} B.{4,5,6,8}C.{3,5,7,8} D.{3,4,5,6,7,8}3.函数A.是奇函数且在区间上单调递增B.是奇函数且在区间上单调递减C.是偶函数且在区间上单调递增D.是偶函数且在区间上单调递减4.设平面向量,则A. B.C. D.5.已知,则=()A. B.C. D.6.如图是一个体积为10的空间几何体的三视图,则图中的值为()A2 B.3C.4 D.57.在半径为2的圆上,一扇形的弧所对的圆心角为,则该扇形的面积为()A. B.C. D.8.下列函数是偶函数,且在上单调递减的是A. B.C. D.9.借助信息技术画出函数和(a为实数)的图象,当时图象如图所示,则函数的零点个数为()A.3 B.2C.1 D.010.已知指数函数是减函数,若,,,则m,n,p的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11._____12.圆的半径是6cm,则圆心角为30°的扇形面积是_________13.已知函数,则______14.函数的图象的对称中心的坐标为___________.15.已知集合,,则集合中元素的个数为__________16.已知一元二次不等式对一切实数x都成立,则k的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为,三月底测得凤眼的覆盖面积为,凤眼莲的覆盖面积y(单位:)与月份x(单位:月)的关系有两个函数模型与可供选择(1)试判断哪个函数模型更合适并说明理由,求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:)18.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?19.已知定理:“若、为常数,满足,则函数的图象关于点中心对称”.设函数,定义域为.(1)试求的图象对称中心,并用上述定理证明;(2)对于给定的,设计构造过程:、、、.如果,构造过程将继续下去;如果,构造过程将停止.若对任意,构造过程可以无限进行下去,求的取值范围.20.已知两条直线l1:ax+2y-1=0,l2:3x+(a+1)y+1=0.(1)若l1∥l2,求实数a的值;(2)若l1⊥l2,求实数a的值21.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若的最大值与最小值之和为5,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】全称命题的否定特称命题,任意改为存在,把结论否定.【题目详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.2、D【解题分析】根据并集的概念和运算即可得出结果.【题目详解】由,得.故选:D3、A【解题分析】由可知是奇函数,排除,,且,由可知错误,故选4、A【解题分析】∵∴故选A;【考点】:此题重点考察向量加减、数乘的坐标运算;【突破】:准确应用向量的坐标运算公式是解题的关键;5、B【解题分析】根据两角和的正切公式求出,再根据二倍角公式以及同角三角函数的基本关系将弦化切,代入求值即可.【题目详解】解:解得故选:【题目点拨】本题考查三角恒等变换以及同角三角函数的基本关系,属于中档题.6、A【解题分析】由已知可得:该几何体是一个四棱锥和四棱柱的组合体,其中棱柱的体积为:3×2×1=6,棱锥的体积为:×3×2×x=2x则组合体的体积V=6+2x=10,解得:x=2,故选A点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.7、D【解题分析】利用扇形的面积公式即可求面积.【题目详解】由题设,,则扇形的面积为.故选:D8、D【解题分析】函数为奇函数,在上单调递减;函数为偶函数,在上单调递增;函数为非奇非偶函数,在上单调递减;函数为偶函数,在上单调递减故选D9、B【解题分析】由转化为与的图象交点个数来确定正确选项.【题目详解】令,,所以函数的零点个数即与的图象交点个数,结合图象可知与的图象有个交点,所以函数有个零点.故选:B10、B【解题分析】由已知可知,再利用指对幂函数的性质,比较m,n,p与0,1的大小,即可得解.【题目详解】由指数函数是减函数,可知,结合幂函数的性质可知,即结合指数函数的性质可知,即结合对数函数的性质可知,即,故选:B.【题目点拨】方法点睛:本题考查比较大小,比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法,解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用根式性质与对数运算进行化简.【题目详解】,故答案为:612、3π【解题分析】根据扇形的面积公式即可计算.【题目详解】,.故答案为:3π.13、【解题分析】由分段函数解析式先求,再求.【题目详解】由已知可得,故.故答案为:2.14、【解题分析】利用正切函数的对称中心求解即可.【题目详解】令=(),得(),∴对称中心的坐标为故答案:()15、2【解题分析】依题意,故,即元素个数为个.16、【解题分析】由题意,函数的图象在x轴上方,故,解不等式组即可得k的取值范围【题目详解】解:因为不等式为一元二次不等式,所以,又一元二次不等式对一切实数x都成立,所以有,解得,即,所以实数k的取值范围是,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)理由见解析,函数模型为;(2)六月份.【解题分析】(1)由凤眼莲在湖中的蔓延速度越来越快,故选符合要求,根据数据时,时代入即可得解;(2)首先求时,可得元旦放入凤眼莲的覆盖面积是,解不等式即可得解.【题目详解】(1)两个函数与在上都是增函数,随着的增加,指数型函数的值增加速度越来越快,而函数的值增加越来越慢,由凤眼莲在湖中的蔓延速度越来越快,故选符合要求;由时,由时,可得,解得,故该函数模型的解析式为;(2)当时,,元放入凤眼莲的覆盖面积是,由,得所以,由,所以.所以凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.18、乙商场中奖的可能性大.【解题分析】分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到试题解析:如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积,阴影部分的面积为,则在甲商场中奖的概率为;如果顾客去乙商场,记3个白球为,,,3个红球为,,,记(,)为一次摸球的结果,则一切可能的结果有:,,,,,,,,,,,,,,,共15种,摸到的是2个红球有,,,共3种,则在乙商场中奖的概率为,又,则购买该商品的顾客在乙商场中奖的可能性大.19、(1),证明见解析;(2).【解题分析】(1)计算出的值,由此可得出结论;(2)分、、三种情况讨论,求出函数的值域,根据题意可得出关于实数的不等式组,由此可求得实数的取值范围.【题目详解】(1),由已知定理得,的图象关于点成中心对称;(2),当时,若,由基本不等式可得,若,由基本不等式可得.此时,函数的值域为,当时,的值域为,当时,的值域为,因为构造过程可以无限进行下去,对任意恒成立或,由此得到.因此,实数的取值范围是.【题目点拨】关键点点睛:本题考查函数的新定义问题,解本题的关键在于对实数的取值进行分类讨论,求出函数的值域,根据题意得出所满足的不等式组求解.20、(1)a=2(2)【解题分析】(1)利用直线与直线平行的条件直接求解;(2)利用直线与直线垂直的条件直接求解【题目详解】(1)由题可知,直线l1:ax+2y-1=0,l2:3x+(a+1)y+1=0.若l1∥l2,则解得a=2或a=-3(舍去)综上,则a=2;(2)由题意,若l1⊥l2,则,解得.【题目点拨】本题考查实数值的求法,考查直线与直线平行与垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题21、(1)增区间是[kπ-,kπ+],k∈Z(2)【解题分析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定出的函数解析式,根据的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJG(烟草)30-2016卷烟端部落丝测定仪检定规程振动法
- 2025年美术教师编制考试模拟试卷:美术教师教学研究能力试题集
- 考研复习-风景园林基础考研试题【各地真题】附答案详解
- 风景园林基础考研资料试题及参考答案详解ab卷
- 泰州市2024-2025学年五年级下学期数学期末试题一(有答案)
- 2025年河北省定州市辅警招聘考试试题题库及答案详解(必刷)
- 2024年演出经纪人之演出经纪实务押题练习试卷【必刷】 (一)
- 化学●福建卷丨2022年福建省普通高中学业水平选择性考试化学试卷及答案
- Brand KPIs for online betting:KTO in Brazil-英文培训课件2025.5
- 初中数学九年级下册统编教案 6.2黄金分割
- 《滑炒技法-尖椒炒肉丝》说课课件
- 井下电气设备防爆完好图册(新)
- 移动通信行业典型安全隐患图解
- 重度子痫前期子痫急救演练
- 以助产士为主导的连续护理模式的发展现状
- 生态系统对全球变化的响应
- 2023版中国近现代史纲要课件:09第九专题 新民主主义革命伟大胜利
- 风电场风机塔筒清洗项目四措两案(三措两案)
- 中国传统文化(西安交通大学)智慧树知到答案章节测试2023年
- 国际结算(中文)
- GB/T 3098.1-2010紧固件机械性能螺栓、螺钉和螺柱
评论
0/150
提交评论