




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津开发区第一中学2024届高一上数学期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.有一组实验数据如下表所示:1.93.04.0516.11.54.07.512.018.0现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是()A. B.C. D.2.函数的最小值和最大值分别为()A. B.C. D.3.把的图象上各点的横标缩短为原来的(纵坐标不变),再把所得图象向右平移个单位长度,得到的图象,则()A. B.C. D.4.已知角α的终边过点,则的值是()A. B.C.0 D.或5.已知,则的值是A.0 B.–1C.1 D.26.设,则A. B.C. D.7.下列命题正确的是()A.若,则B.若,则C.若,则D.若,则8.已知向量满足,且,若向量满足,则的取值范围是A. B.C D.9.若方程则其解得个数为()A.3 B.4C.6 D.510.以下元素的全体不能够构成集合的是A.中国古代四大发明 B.周长为的三角形C.方程的实数解 D.地球上的小河流二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系xOy中,设角α的始边与x轴的非负半轴重合,终边与单位圆交于点P45,35,将射线OP绕坐标原点O按逆时针方向旋转π2后与单位圆交于点Qx212.函数的单调减区间是_________.13.给出下列四种说法:(1)函数与函数的定义域相同;(2)函数与的值域相同;(3)若函数式定义在R上的偶函数且在为减函数对于锐角则;(4)若函数且,则;其中正确说法序号是________.14.函数的单调递增区间为__________15.若函数过点,则的解集为___________.16.若,则a的取值范围是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求函数最小正周期以及函数在区间上的最大值和最小值;(2)将函数图象的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,若,求实数的取值范围18.已知函数,.(1)运用五点作图法在所给坐标系内作出在内的图像(画在答题卡上);(2)求函数的对称轴,对称中心和单调递增区间.19.(1)若是的根,求的值(2)若,,且,,求的值20.已知全集,,.(1)求;(2)若,求实数的取值范围;(3)若,求实数的取值范围.21.已知函数的部分图象如图所示(1)求的解析式.(2)写出的递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】先画出实验数据的散点图,结合各选项中的函数特征可得的选项.【题目详解】实验数据的散点图如图所示:4个选项中的函数,只有B符合,故选:B.2、C【解题分析】2.∴当时,,当时,,故选C.3、C【解题分析】根据三角函数的周期变换和平移变换的原理即可得解.【题目详解】解:把的图象上各点的横标缩短为原来的(纵坐标不变),可得的函数图像,再把所得图象向右平移个单位长度,可得函数,所以.故选:C.4、B【解题分析】根据三角函数的定义进行求解即可.【题目详解】因为角α的终边过点,所以,,,故选:B5、A【解题分析】利用函数解析式,直接求出的值.【题目详解】依题意.故选A.【题目点拨】本小题主要考查函数值的计算,考查函数的对应法则,属于基础题.6、B【解题分析】因为,所以.选B7、D【解题分析】由不等式性质依次判断各个选项即可.【题目详解】对于A,若,由可得:,A错误;对于B,若,则,此时未必成立,B错误;对于C,当时,,C错误;对于D,当时,由不等式性质知:,D正确.故选:D.8、B【解题分析】由题意利用两个向量加减法的几何意义,数形结合求得的取值范围.【题目详解】设,根据作出如下图形,则当时,则点的轨迹是以点为圆心,为半径的圆,且结合图形可得,当点与重合时,取得最大值;当点与重合时,取得最小值所以的取值范围是故当时,的取值范围是故选:B9、C【解题分析】分别画出和的图像,即可得出.【题目详解】方程,即,令,,易知它们都是偶函数,分别画出它们的图像,由图可知它们有个交点.故选:.【题目点拨】本题主要考查的是函数零点,利用数型结合是解决本题的关键,同时考查偶函数的性质,是中档题.10、D【解题分析】地球上的小河流不确定,因此不能够构成集合,选D.二、填空题:本大题共6小题,每小题5分,共30分。11、①.34##0.75②.-【解题分析】利用三角函数的定义和诱导公式求出结果【题目详解】由三角函数的定义及已知可得:sinα=3所以tan又x故答案为:34,12、##【解题分析】根据复合函数的单调性“同增异减”,即可求解.【题目详解】令,根据复合函数单调性可知,内层函数在上单调递减,在上单调递增,外层函数在定义域上单调递增,所以函数#在上单调递减,在上单调递增.故答案为:.13、(1)(3)【解题分析】(1)根据定义域直接判断;(2)分别求出值域即可判断;(3)利用偶函数图形的对称性得出在上的单调性及锐角,可以判断;(4)通过对数性质及对数运算即可判断.【题目详解】(1)函数与函数的定义域都为.所以(1)正确.(2)函数的值域为而的值域为,所以值域不同,故(2)错误.(3)函数在定义R上的偶函数且在为减函数,则函数在在为增函数,又为锐角,则,所以,故(3)正确.(4)函数且,则,即,得,故(4)错误.故答案为:(1)(3).【题目点拨】本题主要考查了指数函数、对数函数与幂函数的定义域与值域的求解,函数的奇偶性和单调性的判定,对数的运算,属于函数知识的综合应用,是中档题.14、【解题分析】由可得,或,令,因为在上递减,函数在定义域内递减,根据复合函数的单调性可得函数的单调递增区间为,故答案为.15、【解题分析】由函数过点可求得参数a的值,进而解对数不等式即可解决.详解】由函数过点可得,,则,即,此时由可得即故答案为:16、【解题分析】先通过的大小确定的单调性,再利用单调性解不等式即可【题目详解】解:且,,得,又在定义域上单调递减,,,解得故答案为:【题目点拨】方法点睛:在解决与对数函数相关的解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);最大值为,最小值;(2).【解题分析】(1)由题可得,再利用正弦函数的性质即求;(2)由题可得,利用正弦函数的性质可知在上单调递增,进而可得,即得.【小问1详解】∵,,∴,∴函数的最小正周期为,当时,,,∴,故函数在区间上的最大值为,最小值;【小问2详解】由题可得,由,可得,故在上单调递增,又,,由可得,,解得,∴实数的取值范围为.18、(1)详见解析(2)函数的对称轴为;对称中心为;单调递增区间为:【解题分析】(1)五点法作图;(2)整体代入求对称轴,对称中心,单调递增区间.【小问1详解】列表:0010-10020-20描点画图:【小问2详解】求对称轴:,故函数的对称轴为求对称中心:,故函数的对称中心为求单调递增区间:,故函数的单调递增区间为:19、(1);(2)【解题分析】(1)先求出,再通过诱导公式及切化弦化简原式后再代值即可;(2)通过角的范围及已知的三角函数值求出和,再运用正弦的两角差的公式计算即可.【题目详解】(1)方程解得或,因为为其解,所以.则原式由于,所以原式.(2)因为,所以,又因为,所以,因为,,可得,又,可得,而.20、(1);(2);(3).【解题分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 情报交换测试题及答案
- 光电工程师证书考试实务策略试题及答案
- 湘艺版八年级下册春江花月夜 草原上教案设计
- 2024文化产业管理证书考试市场定位题
- 山东省郯城县八年级道德与法治上册 第五单元 拥有合法财产 保护消费权益 第10课 做个聪明的消费者 第1框消费者依法享有的权益教学设计 鲁人版六三制
- 信息系统项目管理师考试的案例分析与讨论试题及答案
- 全面掌握2024年激光工程师考试的试题及答案
- 临床患者信息保护知识试题及答案
- 临床执业医师考试重要纪念试题及答案
- 急救护理知识试题及答案
- 2024至2030年全球及中国汽车紧急呼叫系统(eCall)行业市场分析及投资建议报告
- 新能源汽车电控系统的新型传感器应用考核试卷
- 2024年度成都市人事考试工作高频考题难、易错点模拟试题(共500题)附带答案详解
- 劳动项目四《洗苹果》(课件)一年级下册劳动人教版
- KISSSOFT操作与齿轮设计培训教程
- 脊柱科医生工作总结汇报
- 康复医院建筑设计标准征求意见稿
- 实验验证动量守恒定律(教学设计)高二物理系列(人教版2019选择性)
- 2024年二级建造师继续教育题库及答案(500题)
- 2024年中国BIM行业市场动态分析、发展方向及投资前景分析报告
- (正式版)JBT 2930-2024 低压电器产品型号编制方法
评论
0/150
提交评论