版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省白城市洮南市第十中学2024届高一数学第一学期期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B.C. D.2.已知角的终边过点,且,则的值为()A. B.C. D.3.已知点在第二象限,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限4.设全集为,集合,,则()A. B.C. D.5.奇函数f(x)在(-∞,0)上单调递增,若f(-1)=0,则不等式f(x)<0的解集是.A.(-∞,-1)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1) D.(-1,0)∪(1,+∞)6.已知y=(x-m)(x-n)+2022(m<n),且α,β(α<β)是方程y=0的两根,则α,β,m,n的大小关系是()A.α<m<n<β B.m<α<n<βC.m<α<β<n D.α<m<β<n7.下列函数中,在区间上是增函数是A. B.C. D.8.命题“,”的否定为()A., B.,C., D.,9.已知函数y=(12)x的图象与函数y=logax(a>0,A.[ 2C.[ 810.已知定义域为R的函数在单调递增,且为偶函数,若,则不等式的解集为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若函数的最小值与函数的最小值相等,则实数的取值范围是__________12.不等式x2-5x+6≤0的解集为______.13.已知函数若是函数的最小值,则实数a的取值范围为______14.在平面直角坐标系中,已知为坐标原点,,,,若动点,则的最大值为______.15.设向量,若⊥,则实数的值为______16.不等式的解集为,则的取值范围是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的定义域为,不等式的解集为设集合,且,求实数的取值范围;定义且,求18.如图,三棱柱中,,,,为的中点,且.(1)求证:平面;(2)求与平面所成角的大小.19.甲地到乙地的距离大约为240,某汽车公司为测试一种新型号的汽车的耗油量与行驶速度的关系,进行了多次实地测试,收集到了该车型的每小时耗油量Q(单位:)与速度v(单位:)()的数据如下表:v0406080120Q0.0006.6678.12510.00020.000为了描述汽车每小时耗油量与速度的关系,现有以下三种模型供选择:①;②;③.(1)选出你认为最符合实际的函数模型,并说明理由;(2)从甲地到乙地,该型号的汽车应以什么速度行驶才能使总耗油量最少?20.函数在一个周期内的图象如图所示,O为坐标原点,M,N为图象上相邻的最高点与最低点,也在该图象上,且(1)求的解析式;(2)的图象向左平移1个单位后得到的图象,试求函数在上的最大值和最小值21.在三棱锥中,和是边长为等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】圆的圆心在直线上,设圆心为.圆与直线及都相切,所以,解得.此时半径为:.所以圆的方程为.故选B.2、B【解题分析】因为角的终边过点,所以,,解得,故选B.3、C【解题分析】利用任意角的三角函数的定义,三角函数在各个象限中的负号,求得角α所在的象限【题目详解】解:∵点P(sinα,tanα)在第二象限,∴sinα<0,tanα>0,若角α顶点为坐标原点,始边为x轴的非负半轴,则α的终边落在第三象限,故选:C4、B【解题分析】先求出集合B的补集,再根据集合的交集运算求得答案.【题目详解】因为,所以,故,故选:B.5、A【解题分析】考点:奇偶性与单调性的综合分析:根据题目条件,画出一个函数图象,再观察即得结果解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(-∞,-1)∪(0,1)故选A6、C【解题分析】根据二次函数的性质判断【题目详解】记,由题意,,的图象是开口向上的抛物线,所以上递减,在上递增,又,,所以,,即(也可由的图象向下平移2022个单位得的图象得出判断)故选:C7、A【解题分析】由题意得函数在上为增函数,函数在上都为减函数.选A8、C【解题分析】由全称命题的否定是特称命题可得答案.【题目详解】根据全称命题的否定是特称命题,所以“,”的否定为“,”.故选:C.9、D【解题分析】由已知中两函数的图象交于点P( 由指数函数的性质可知,若x0≥2,则0<y由于x0≥2,所以a>1且4a点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于a的不等式是解答的关键,试题比较基础,属于基础题.10、D【解题分析】根据题意,由函数为偶函数分析可得函数的图象关于直线对称,结合函数的单调性以及特殊值分析可得,解可得的取值范围,即可得答案【题目详解】解:根据题意,函数为偶函数,则函数的图象关于直线对称,又由函数在,单调递增且f(3),则,解可得:,即不等式的解集为;故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由二次函数的知识得,当时有.令,则,.结合二次函数可得要满足题意,只需,解不等式可得所求范围【题目详解】由已知可得,所以当时,取得最小值,且令,则,要使函数的最小值与函数的最小值相等,只需满足,解得或.所以实数的取值范围是故答案为【题目点拨】本题考查二次函数最值的问题,求解此类问题时要结合二次函数图象,即抛物线的开口方向和对称轴与区间的关系进行求解,同时注意数形结合在解题中的应用,考查分析问题和解决问题的能力,属于基础题12、【解题分析】根据二次函数的特点即可求解.【题目详解】由x2-5x+6≤0,可以看作抛物线,抛物线开口向上,与x轴的交点为,∴,即原不等式的解集为.13、【解题分析】考虑分段函数的两段函数的最小值,要使是函数的最小值,应满足哪些条件,据此列出关于a的不等式,解得答案.【题目详解】要使是函数的最小值,则当时,函数应为减函数,那么此时图象的对称轴应位于y轴上或y轴右侧,即当时,,当且仅当x=1时取等号,则,解得,所以,故答案为:.14、【解题分析】设动点,由题意得动点轨迹方程为则由其几何意义得表示圆上的点到的距离,故点睛:本题主要考查了平面向量的线性运算及其运用,综合了圆上点与定点之间的距离最大值,先给出动点的轨迹方程,再表示出向量的坐标结果,依据其几何意义计算求得结果,本题方法不唯一,还可以直接计算含有三角函数的最值15、【解题分析】∵,∴,,又⊥∴∴故答案为16、[0,1)##0≤k<1【解题分析】分k=0和k≠0两种情况进行讨论.k≠0时,可看为函数恒成立,结合二次函数的图像性质即可求解.【题目详解】①当时,不等式可化为1>0,此时不等式的解集为,符合题意;②当时,要使得不等式的解集为,则满足,解得;综上可得,实数的取值范围是.故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】由二次不等式的解法得,由集合间的包含关系列不等式组求解即可;由对数函数的定义域可得,利用指数函数的单调性解不等式可得,由定义且,先求出,再求出即可【题目详解】解不等式,得:,即,又集合,且,则有,解得:,故答案为.令,解得:,即,由定义且可知:即,即,故答案为.【题目点拨】本题考查了二次不等式的解法、对数函数的定义域、指数函数的单调性以及新定义问题,属中档题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.18、(1)证明见解析(2)【解题分析】(1)连结与交于点,连结,由中位线定理可得,再根据线面平行的判定定理即可证明结果;(2)方法一:根据线面垂直的判定定理,可证明平面;取的中点,易证平面,所以即所求角,再根据直棱柱的有关性质求即可得到结果;方法二:根据线面垂直的判定定理,可证明平面;取的中点,易证平面;所以即与平面所成的角,再根据直棱柱的有关性质求即可得到结果.【小问1详解】证明:如图一,连结与交于点,连结.在中,、为中点,∴.又平面,平面,∴平面.图一【小问2详解】证明:(方法一)如图二,图二∵,为的中点,∴.又,,∴平面.取的中点,又为的中点,∴、、平行且相等,∴四边形是平行四边形,∴与平行且相等.又平面,∴平面,∴即所求角.由前面证明知平面,∴,又,,∴平面,∴此三棱柱为直棱柱.设∴,,,.(方法二)如图三,图三∵,为的中点,∴.又,,∴平面.取的中点,则,∴平面.∴即与平面所成的角.由前面证明知平面,∴,又,,∴平面,∴此三棱柱为直棱柱.设,∴,,∴.19、(1)最符合实际的模型为①,理由见解析(2)从甲地到乙地,该型号的汽车以80的速度行驶时能使总耗油量最少【解题分析】(1)根据定义域和单调性来判断;(2)根据行驶时间与单位时间的耗油量得到总耗油量的函数表达式,再求最小值的条件即可.【小问1详解】依题意,所选的函数必须满足两个条件:定义域为,且在区间上单调递增.由于模型③定义域不可能是.而模型②在区间上是减函数.因此,最符合实际的模型为①.【小问2详解】设从甲地到乙地行驶总耗油量为y,行驶时间为t,依题意有.∵,,∴,它是一个关于v的开口向上的二次函数,其对称轴为,且,∴当时,y有最小值.由题设表格知,当时,,,.∴从甲地到乙地,该型号的汽车以80km/h的速度行驶时能使总耗油量最少.20、(1)(2)最大值和最小值分别为和【解题分析】(1)连接交轴于点,过点作于点,设,通过勾股定理计算出和,再结合也在该图象上可求解;(2)根据平移得到,再化简得,从而可求最值.【小问1详解】连接交轴于点,过点作于点.设,则有,即,所以,,因此,所以有,解得,所以,又因为其过,则,又,从而得,所以.【小问2详解】由向左平移1个单位后,得,所以.因为,则,所以当时有最小值,;当时有最大值,.21、(1)见解析(2)见解析(3).【解题分析】由三角形中位线定理,得出,结合线面平行的判定定理,可得平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中等教育特色学校发展与示范建设考核试卷
- 施工现场安全教育机械安全篇考核试卷
- 环保的意义理论与实践考核试卷
- 炼铁生产中的作业安全操作规程考核试卷
- 危险品仓储应急救援演练考核试卷
- 拆船业在全球产业链中的位置考核试卷
- 可穿戴设备在健康管理中的实际效果考核试卷
- 信息系统的组织与企业管理考核试卷
- 低温仓储人员安全行为培训考核试卷
- DB11T 494.12-2013 人力资源服务规范 第12部分:劳务派遣
- 251直线与圆的位置关系(第1课时)(导学案)(原卷版)
- 2024浙江绍兴市人才发展集团第1批招聘4人(第1号)高频难、易错点500题模拟试题附带答案详解
- 幼儿园说课概述-课件
- 冠状动脉介入风险预测评分的临床应用
- 35导数在经济中的应用
- 苏科版(2024新版)七年级上册数学期中学情评估测试卷(含答案)
- 部编版《道德与法治》三年级上册第10课《父母多爱我》教学课件
- 期中模拟检测(1-3单元)2024-2025学年度第一学期西师大版二年级数学
- 气管插管操作规范(完整版)
- 2024-2025学年外研版英语八年级上册期末作文范文
- 四级劳动关系协调员试题库含答案
评论
0/150
提交评论