




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省马鞍山市数学高一上期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移个单位,得到的图像对应的解析式为()A. B.C. D.2.下列函数中,在区间上是减函数的是()A. B.C. D.3.已知,则的值为()A B.1C. D.4.函数的零点所在的区间为()A.(-1,0) B.(0,)C.(,1) D.(1,2)5.已知偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.6.()A. B.C. D.17.函数f(x)=-4x+2x+1的值域是()A. B.C. D.8.将一个直角三角形绕其一直角边所在直线旋转一周,所得的几何体为()A.一个圆台 B.两个圆锥C.一个圆柱 D.一个圆锥9.已知向量,,那么()A.5 B.C.8 D.10.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若是的最大值,则实数t的取值范围是______12.两平行线与的距离是__________13.已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_____________.14.已知,均为正数,且,则的最大值为____,的最小值为____.15.已知函数若是函数的最小值,则实数a的取值范围为______16.已知角α∈(-,0),cosα=,则tanα=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.18.计算下列各式的值:(1)(2)19.已知函数是定义在上的增函数,且.(1)求的值;(2)若,解不等式.20.(1)计算:;(2)已知,求的值.21.已知全集,,.(1)求;(2)若,求实数的取值范围;(3)若,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由三角函数的平移变换即可得出答案.【题目详解】函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得,再将所得的图象向左平移个单位可得故选:B.2、D【解题分析】根据二次函数,幂函数,指数函数,一次函数的单调性即可得出答案.【题目详解】解:对于A,函数在区间上是增函数,故A不符合题意;对于B,函数在区间上是增函数,故B不符合题意;对于C,函数在区间上是增函数,故C不符合题意;对于D,函数在区间上是减函数,故D符合题意.故选:D.3、A【解题分析】知切求弦,利用商的关系,即可得解.【题目详解】,故选:A4、C【解题分析】应用零点存在性定理判断零点所在的区间即可.【题目详解】由解析式可知:,∴零点所在的区间为.故选:C.5、B【解题分析】由题得函数在上单调递减,且,再根据函数的图象得到,解不等式即得解.【题目详解】因为偶函数在上单调递增,且,所以在上单调递减,且,因为,所以,所以.故选:B【题目点拨】本题主要考查函数的单调性和奇偶性的应用,意在考查学生对这些知识的理解掌握水平.6、B【解题分析】先利用诱导公式把化成,就把原式化成了两角和余弦公式,解之即可.【题目详解】由可知,故选:B7、A【解题分析】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),然后利用二次函数求值域【题目详解】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),其对称轴方程为t=,∴当t=时,g(t)有最大值为∴函数f(x)=-4x+2x+1的值域是故选A【题目点拨】本题考查利用换元法及二次函数求值域,是基础题8、D【解题分析】依题意可知,这是一个圆锥.9、B【解题分析】根据平面向量模的坐标运算公式,即可求出结果.【题目详解】因为向量,,所以.故选:B.10、C【解题分析】易知为非奇非偶函数,故排除选项A,因为,,故排除选项B、D,而在定义域上既是奇函数又是单调递增函数.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先求出时最大值为,再由是的最大值,解出t的范围.【题目详解】当时,,由对勾函数的性质可得:在时取得最大值;当时,,且是的最大值,所以,解得:.故答案为:12、【解题分析】直接根据两平行线间的距离公式得到平行线与的距离为:故答案为.13、【解题分析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围.【题目详解】因为已知是定义在R上的偶函数,所以由,又因为上单调递减,所以有.当时,;当时,.故答案为:【题目点拨】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力.14、①.②.##【解题分析】利用基本不等式的性质即可求出最大值,再通过消元转化为二次函数求最值即可.【题目详解】解:由题意,得4=2a+b≥2,当且仅当2a=b,即a=1,b=2时等号成立,所以0<ab≤2,所以ab的最大值为2,a2+b2=a2+(4-2a)2=5a2-16a+16=5(a-)2+≥,当a=,b=时取等号.故答案为:,.15、【解题分析】考虑分段函数的两段函数的最小值,要使是函数的最小值,应满足哪些条件,据此列出关于a的不等式,解得答案.【题目详解】要使是函数的最小值,则当时,函数应为减函数,那么此时图象的对称轴应位于y轴上或y轴右侧,即当时,,当且仅当x=1时取等号,则,解得,所以,故答案为:.16、【解题分析】利用同角三角函数的平方关系和商数关系,即得解【题目详解】∵α∈(-,0),cosα=,∴sinα=-=-,∴tanα==-.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2).【解题分析】分析:(1)先根据求出k的值,再利用平行线间的距离公式求与的距离.(2)先根据求出k的值,再解方程组得与的交点的坐标.详解:(1)若,则由,即,解得或.当时,直线:,直线:,两直线重合,不符合,故舍去;当时,直线:,直线:,所以.(2)若,则由,得.所以两直线方程为:,:,联立方程组,解得,所以与的交点的坐标为.点睛:(1)本题主要考查直线的位置关系和距离的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)直线与直线平行,则且两直线不重合.直线与直线垂直,则.18、(1)(2)【解题分析】(1)根据指数的运算性质进行求解即可;(2)根据对数的运算性质进行求解即可.【小问1详解】【小问2详解】19、(1)0(2)【解题分析】(1)直接利用赋值法,令即可得结果;(2)利用已知条件将不等式化为,结合单调性可得结果.【小问1详解】令则有.【小问2详解】∵∴,则可化为,即则,∵在上单调递增∴,解得.即不等式的解集为.20、(1);(2).【解题分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年项目管理考试提升技巧试题及答案
- 矿物加工过程中的物理分离技术考核试卷
- 液力元件的激光加工技术考核试卷
- 渔具设计原理考核试卷
- 目视化管理下的团队协作与沟通机制考核试卷
- 项目管理专业人士高效复习试题及答案
- 2025年企业会计与审计一体化管理研究试题及答案
- 礼仪用品行业品牌建设与市场竞争力提升考核试卷
- 潜水装备的水下作业安全管理机制优化考核试卷
- 2023年中国电信股份有限公司湾沚分公司公开招聘笔试参考题库附带答案详解
- 《幸福比优秀更重要》读书分享 课件
- DB37-T 3848-2019 地热矿泉水绿色矿山建设规范-(高清版)
- 食品生产许可审查通则解读课件
- 美丽的晋祠-完整版课件
- 医院“双培养”制度
- 时区与区时课件
- 许慎《说文解字》(全文)
- DB34∕T 1948-2013 建设工程造价咨询档案立卷标准
- 通用门座机安装工艺2
- 企业集团财务管理综合练习计算
- 养老机构服务高质量115项明细
评论
0/150
提交评论