版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏林芝市第二高级中学2024届高一数学第一学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“x0,x2x0”的否定是()A.x0,x2x0 B.x0,x2x0C.x0,x2x0 D.x0,x2x02.的弧度数是()A. B.C. D.3.下列叙述正确的是()A.三角形的内角是第一象限角或第二象限角 B.钝角是第二象限角C.第二象限角比第一象限角大 D.不相等的角终边一定不同4.已知点,向量,若,则点的坐标为()A. B.C. D.5.函数(,且)的图象必过定点A. B.C. D.6.已知,,则的值等于()A. B.C. D.7.下列说法中,错误的是()A.若,,则 B.若,则C.若,,则 D.若,,则8.中,设,,为中点,则A. B.C. D.9.已知f(x-1)=2x-5,且f(a)=6,则a等于()A. B.C. D.10.已知全集,集合,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)=(5-a)x-a+1,x<1ax,x≥1,满足对任意都有成立,那么实数12.设函数,若关于x的方程有且仅有6个不同的实根.则实数a的取值范围是_______.13.已知,且,写出一个满足条件的的值___________14.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.15.Sigmoid函数是一个在生物学、计算机神经网络等领域常用的函数模型,其解析式为S(x)=11+e-x,则此函数在R上________(填“单调递增”“单调递减”或16.已知函数,若函数的最小值与函数的最小值相等,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知f(x)是定义在R上偶函数,且当x≥0时,(1)用定义法证明f(x)在(0,+∞)上单调递增;(2)求不等式f(x)>0的解集.18.已知函数(,且).(1)若函数在上的最大值为2,求的值;(2)若,求使得成立的的取值范围.19.已知两点,,两直线:,:求:(1)过点且与直线平行的直线方程;(2)过线段的中点以及直线与的交点的直线方程20.已知,且(1)求的值;(2)求的值.21.计算下列各式的值:(I);(Ⅱ)log327+lg25+1g4+log42.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据含有一个量词命题否定的定义,即可得答案.【题目详解】命题“x0,x2x0”的否定是:“x0,x2x0”.故选:B2、C【解题分析】弧度,弧度,则弧度弧度,故选C.3、B【解题分析】利用象限角、钝角、终边相同角的概念逐一判断即可.【题目详解】∵直角不属于任何一个象限,故A不正确;钝角属于是第二象限角,故B正确;由于120°是第二象限角,390°是第一象限角,故C不正确;由于20°与360°+20°不相等,但终边相同,故D不正确.故选B【题目点拨】本题考查象限角、象限界角、终边相同的角的概念,综合应用举反例、排除等手段,选出正确的答案4、B【解题分析】设点坐标为,利用向量的坐标运算建立方程组,解之可得选项.【题目详解】设点坐标为,,A,所以,又,,所以.解得,解得点坐标为.故选:B.5、C【解题分析】因为函数,且有(且),令,则,,所以函数的图象经过点.故选:C.【题目点拨】本题主要考查对数函数(且)恒过定点,属于基础题目.6、B【解题分析】由题可分析得到,由差角公式,将值代入求解即可【题目详解】由题,,故选:B【题目点拨】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题7、A【解题分析】逐一检验,对A,取,判断可知;对B,,可知;对C,利用作差即可判断;对D根据不等式同向可加性可知结果.【题目详解】对A,取,所以,故错误;对B,由,,所以,故正确;对C,,由,,所以,所以,故正确;对D,由,所以,又,所以故选:A8、C【解题分析】分析:直接利用向量的三角形法则求.详解:由题得,故答案为C.点睛:(1)本题主要考查向量的加法和减法法则,意在考查学生对这些基础知识的掌握水平和转化能力.(2)向量的加法法则:,向量的减法法则:.9、B【解题分析】先用换元法求出,然后由函数值求自变量即可.【题目详解】令,则,可得,即,由题知,解得.故选:B10、B【解题分析】首先确定全集,而后由补集定义可得结果【题目详解】解:,又,.故选B【题目点拨】本题考查了集合的补集,熟练掌握补集的定义是解决本题的关键,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用求解分段函数单调性的方法列出不等式关系,由此即可求解【题目详解】由已知可得函数在R上为单调递增函数,则需满足,解得,所以实数a的取值范围为,故答案为:12、或或【解题分析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【题目详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件.(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【题目点拨】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.13、π(答案不唯一)【解题分析】利用,可得,又,确定可得结果.【题目详解】因为,所以,,则,或,,又,故满足要求故答案为:π(答案不唯一)14、①.6②.10240【解题分析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【题目详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【题目点拨】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.15、①.单调递增②.0,1【解题分析】由题可得S(x)=1-1e【题目详解】∵S(x)=11+e∀x1,x2∵x1<x∴S(x1)-S(所以函数S(x)=11+e又ex所以ex+1>1,0<1故答案为:单调递增;0,1.16、【解题分析】由二次函数的知识得,当时有.令,则,.结合二次函数可得要满足题意,只需,解不等式可得所求范围【题目详解】由已知可得,所以当时,取得最小值,且令,则,要使函数的最小值与函数的最小值相等,只需满足,解得或.所以实数的取值范围是故答案为【题目点拨】本题考查二次函数最值的问题,求解此类问题时要结合二次函数图象,即抛物线的开口方向和对称轴与区间的关系进行求解,同时注意数形结合在解题中的应用,考查分析问题和解决问题的能力,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)或【解题分析】(1)先设,然后利用作差法比较与的大小即可判断,(2)当时,,然后结合分式不等式可求,再设,根据已知可求,然后再求解不等式【题目详解】解:(1)是定义在上偶函数,且当时,,设,则,所以,所以在上单调递增,(2)当时,,整理得,,解得或(舍,设,则,,整理得,,解得,(舍或,综上或故不等式的解集或18、(1)或;(2)【解题分析】(1)分类讨论和两种情况,结合函数的单调性可得:或;(2)结合函数的解析式,利用指数函数的单调性可得,求解对数不等式可得的取值范围是.试题解析:(1)当时,在上单调递增,因此,,即;当时,上单调递减,因此,,即.综上,或.(2)不等式即.又,则,即,所以.19、(1)(2)【解题分析】【试题分析】(1)设所求直线方程为:,将点坐标代入,求得的值,即得所求.(2)求得中点坐标和直线交点的坐标,利用点斜式得到所求直线方程.【试题解析】(1)设与:平行的直线方程为:,将代入,得,解得,故所求直线方程是:(2)∵,,∴线段的中点是,设两直线的交点为,联立解得交点,则,故所求直线的方程为:,即20、(1)7(2)【解题分析】(1)根据题意求得,然后利用两角和的正切公式即可得出答案;(2)利用诱导公式及二倍角的余弦公式,结合平方关系化弦为切计算即可得解.【小问1详解】解:由已知得,或,∴或,又∵,∴或,又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年广东省深圳市中考英语押题试卷(二)
- 上海市市辖区(2024年-2025年小学五年级语文)统编版竞赛题((上下)学期)试卷及答案
- 上海市县(2024年-2025年小学五年级语文)统编版期末考试(下学期)试卷及答案
- 海南省陵水黎族自治县2022-2023学年四年级上学期期中英语试题
- 卫生监督机构公益目标评估指标调查表
- 【初中物理】光现象+单元练习-+2024-2025学年人教版物理八年级上册
- 河北省保定市定州市2024-2025学年高二上学期11月期中物理试题(无答案)
- 职业学院轮机工程技术专业人才培养方案
- 厨房用瓮非贵金属制市场需求与消费特点分析
- 戒烟用药物制剂市场需求与消费特点分析
- 二上【教学】《我们不乱扔》
- 《GMP实务教程》 完整全套教学课件 项目1-14 GMP基础知识-药品生产行政检查
- (完整word)绝缘子试验报告
- 《中国梦我的梦》课件
- 肾内科疑难病例讨论慢性肾脏病5期
- 认识烘焙食品课件
- 中医病名对照表
- 创业基础-中南财经政法大学中国大学mooc课后章节答案期末考试题库2023年
- 大数据与数学研究课件
- 汽车检测站工作计划(共4篇)
- 注射用A型肉毒毒素管理制度
评论
0/150
提交评论