版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州高新区一中2024届高一数学第一学期期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对,不等式恒成立,则a的取值范围是()A. B.C.或 D.或2.若函数则下列说法错误的是()A.是奇函数B.若在定义域上单调递减,则或C.当时,若,则D.若函数有2个零点,则3.设函数,且在上单调递增,则的大小关系为A B.C. D.不能确定4.若方程x2+2x+m2+3m=mcos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2 B.-2C.4 D.-45.如图,在三棱锥中,,分别为AB,AD的中点,过EF的平面截三棱锥得到的截面为EFHG.则下列结论中不一定成立的是()A. B.C.平面 D.平面6.已知为锐角,且,,则A. B.C. D.7.设a为实数,“”是“对任意的正数x,”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件8.长方体中,,,E为中点,则异面直线与CE所成角为()A. B.C. D.9.若函数是幂函数,且其图象过点,则函数的单调增区间为A. B.C. D.10.不等式对一切恒成立,则实数a的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.是第___________象限角.12.下列一组数据的分位数是___________.13._____.14.函数的单调递增区间为___________.15.函数的图象的对称中心的坐标为___________.16.已知函数的零点为,则,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于函数f(x),若f(x0)=x0,则称x0为f(x)的“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”满足函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}(Ⅰ)设f(x)=x2-2,求集合A和B;(Ⅱ)若f(x)=x2-a,且满足∅A=B,求实数a的取值范围18.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上的最大值为3,求的值.19.在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点(Ⅰ)求证:面;(Ⅱ)求点到面的距离20.已知函数过定点,函数的定义域为.(Ⅰ)求定点并证明函数的奇偶性;(Ⅱ)判断并证明函数在上的单调性;(Ⅲ)解不等式.21.已知函数.(1)当时,求方程的解;(2)若,不等式恒成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】对讨论,结合二次函数的图象与性质,解不等式即可得到的取值范围.【题目详解】不等式对一切恒成立,当,即时,恒成立,满足题意;当时,要使不等式恒成立,需,即有,解得.综上可得,的取值范围为.故选:A.2、D【解题分析】A利用奇偶性定义判断;B根据函数的单调性,列出分段函数在分段区间的界点上函数值的不等关系求参数范围即可;C利用函数单调性求解集;D将问题转化为与直线的交点个数求参数a的范围.【题目详解】由题设,当时有,则;当时有,则,故是奇函数,A正确因为在定义域上单调递减,所以,得a≤-4或a≥-1,B正确当a≥-1时,在定义域上单调递减,由,得:x>-1且x≠0,C正确的零点个数即为与直线的交点个数,由题意得,解得-3<a<-5+172,D错误故选:D3、B【解题分析】当时,,它在上单调递增,所以.又为偶函数,所以它在上单调递减,因,故,选B.点睛:题设中的函数为偶函数,故根据其在上为增函数判断出,从而得到另一侧的单调性和,故可以判断出.4、A【解题分析】令,由对称轴为,可得,解出,并验证即可.【题目详解】依题意,有且仅有1个实数根.令,对称轴为.所以,解得或.当时,,易知是连续函数,又,,所以在上也必有零点,此时不止有一个零点,故不合题意;当时,,此时只有一个零点,故符合题意.综上,.故选:A【题目点拨】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.5、D【解题分析】利用线面平行的判定和性质对选项进行排除得解.【题目详解】对于,,分别为,的中点,,EF与平面BCD平行过的平面截三棱锥得到的截面为,平面平面,,,故AB正确;对于,,平面,平面,平面,故正确;对于,的位置不确定,与平面有可能相交,故错误.故选:D.【题目点拨】熟练运用线面平行的判定和性质是解题的关键.6、B【解题分析】∵为锐角,且∴∵,即∴,即∴∴故选B7、A【解题分析】根据题意利用基本不等式分别判断充分性和必要性即可.【题目详解】若,因为,则,当且仅当时等号成立,所以充分性成立;取,因为,则,当且仅当时等号成立,即时,对任意的正数x,,但,所以必要性不成立,综上,“”是“对任意的正数x,”的充分非必要条件.故选:A.8、C【解题分析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角【题目详解】解:长方体中,,,为中点,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,设异面直线与所成角为,则,,异面直线与所成角为故选:【题目点拨】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题9、B【解题分析】分别求出m,a的值,求出函数的单调区间即可【题目详解】解:由题意得:,解得:,故,将代入函数的解析式得:,解得:,故,令,解得:,故在递增,故选B【题目点拨】本题考查了幂函数的定义以及对数函数的性质,是一道基础题10、B【解题分析】当时,得到不等式恒成立;当时,结合二次函数的性质,列出不等式组,即可求解.【题目详解】由题意,不等式对一切恒成立,当时,即时,不等式恒成立,符合题意;当时,即时,要使得不等式对一切恒成立,则满足,解得,综上,实数a的取值范围是.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、三【解题分析】根据给定的范围确定其象限即可.【题目详解】由,故在第三象限.故答案为:三.12、26【解题分析】根据百分位数的定义即可得到结果.【题目详解】解:,该组数据的第分位数为从小到大排序后第2与3个数据的平均数,第2与3个数据分别是25、27,故该组数据的第分位数为,故答案为:2613、【解题分析】利用诱导公式变形,再由两角和的余弦求解【题目详解】解:,故答案为【题目点拨】本题考查诱导公式的应用,考查两角和的余弦,是基础题14、【解题分析】根据复合函数“同增异减”的原则即可求得答案.【题目详解】由,设,对称轴为:,根据“同增异减”的原则,函数的单调递增区间为:.故答案为:.15、【解题分析】利用正切函数的对称中心求解即可.【题目详解】令=(),得(),∴对称中心的坐标为故答案:()16、2【解题分析】根据函数的单调性及零点存在定理即得.【题目详解】∵函数,函数在上单调递增,又,∴,即.故答案为:2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)A={-1,2};B={-,-1,,3}(Ⅱ)[-,]【解题分析】(Ⅰ)由f(x)=x得x2-x-2=0,解得x=-1,x=2,故A={-1,2};由f(f(x))=x,可得f(x2-2)=x,即(x2-2)2-(x2-2)-2=x;求解x可得集合B.(Ⅱ)理解A=B时,它表示方程x2-a=x与方程(x2-a)2-a=x有相同的实根,根据这个分析得出关于a的方程求出a的值【题目详解】(Ⅰ)由f(x)=x得x2-x-2=0,解得x=-1,x=2,故A={-1,2};由f(f(x))=x,可得f(x2-2)=x,即(x2-2)2-(x2-2)-2=x;即x4-2x3-6x2+6x+9=0,即(x+1)(x-3)(x2-3)=0,解得x=-1,x=3,x=,x=-,故B={-,-1,,3};(Ⅱ)∵∅A=B,∴x2-a=x有实根,即x2-x-a=0有实根,则△=1+4a≥0,解得a≥-由(x2-a)2-a=x,即x4-2ax2-x+a2-a=0的左边有因式x2-x-a,从而有(x2-x-a)(x2+x-a+1)=0∵A=B,∴x2+x-a+1=0要么没有实根,要么实根是方程x2-x-a=0的根若x2+x-a+1=0没有实根,则a<;若x2+x-a+1=0有实根且实根是方程x2-x-a=0的根,由于两个方程的二次项系数相同,一次项系数不同,故此时x2+x-a+1=0有两个相等的根-,此时a=方程x2-x-a=0可化为:方程x2-x-=0满足条件,故a的取值范围是[-,]【题目点拨】本题考查对新概念的理解和运用的能力,同时考查了集合间的关系和方程根的相关知识,解题过程中体现了分类讨论的数学思想18、(1);(2)或.【解题分析】(1)由函数在至少有一个零点,方程至少有一个实数根,,解出即可;(2)通过对区间端点与对称轴顶点的横坐标的大小比较,再利用二次函数的单调性即可得出函数在上的最大值,令其等于可得结果.试题解析:(1)由.(2)化简得,当,即时,;当,即时,,,(舍);当,即时,,综上,或.19、(Ⅰ)证明见解析;(Ⅱ)【解题分析】(1)取中点,连结,,∵,分别为,的中点,∴可证得,,∴四边形是平行四边形,∴,又∵平面,平面,∴面(2)∵,∴20、(Ⅰ)定点为,奇函数,证明见解析;(Ⅱ)在上单调递增,证明见解析;(Ⅲ).【解题分析】(Ⅰ)根据解析式可求得定点为,即可得解析式,根据奇函数的定义,即可得证;(Ⅱ)利用定义法即可证明的单调性;(Ⅲ)根据的单调性和奇偶性,化简整理,可得,根据函数的定义域,列出不等式组,即可求得答案.【题目详解】(Ⅰ)函数过定点,定点为,,定义域为,.函数为奇函数.(Ⅱ)上单调递增.证明:任取,且,则.,,,,,即,函数在区间上是增函数.(Ⅲ),即,函数为奇函数在上为单调递增函数,,,解得:.故不等式的解集为:【题目点拨】解题的关键是熟练掌握函数奇偶性、单调性的定义,并灵活应用,在处理单调性、奇偶性综合问题时,需要注意函数所有的自变量都要在定义域内,方可求得正确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026集风新能源科技公司招聘笔试备考题库及答案解析
- 2026江西南昌航空大学高层次人才招聘笔试备考题库及答案解析
- 2026河北事业单位联考唐山市招聘1795人笔试备考试题及答案解析
- 2026年河北秦皇岛市第一医院公开选聘工作人员5名笔试备考题库及答案解析
- 2026浙江宁波市鄞州区公立学校招聘编外员工1人笔试备考试题及答案解析
- 2026年福建莆田市仙游县考核中学新任教师招聘28笔试备考题库及答案解析
- 2026云南临沧市老年大学招聘手机常用软件使用和手机视频制作兼职教师笔试备考题库及答案解析
- 2026上半年甘肃事业单位联考甘肃省水利厅招聘39人笔试备考题库及答案解析
- 2026黑龙江哈尔滨市公安局双城分局招聘警务辅助人员70人笔试备考试题及答案解析
- 2026江苏苏州太仓临港投资发展集团有限公司招聘18人笔试备考题库及答案解析
- 2025年幼儿园中、高级教师职称考试(综合素质)综合试题及答案
- 2025年福建省考申论试题及答案
- 2025年新课标综合卷高考真题理综试卷(含答案)
- JJG 264-2025 谷物容重器检定规程
- 坟地长期租赁协议书
- 成人脑室外引流护理团体标准解读
- 大学美育(同济大学)学习通测试及答案
- 《事故快速处理协议书》电子版
- 2024年中国西电集团有限公司招聘笔试参考题库含答案解析
- 化学品安全技术说明(木质素磺酸钠)
- R32装置操作规程
评论
0/150
提交评论