2024届上海市普陀区上海师大附中高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2024届上海市普陀区上海师大附中高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2024届上海市普陀区上海师大附中高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2024届上海市普陀区上海师大附中高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2024届上海市普陀区上海师大附中高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市普陀区上海师大附中高一数学第一学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线,平面满足,则直线与直线的位置关系是A.平行 B.相交或异面C.异面 D.平行或异面2.已知,且满足,则值A. B.C. D.3.下列函数是偶函数的是A. B.C. D.4.设,则A.f(x)与g(x)都是奇函数 B.f(x)是奇函数,g(x)是偶函数C.f(x)与g(x)都是偶函数 D.f(x)是偶函数,g(x)是奇函数5.若幂函数y=f(x)经过点(3,),则此函数在定义域上是A.偶函数 B.奇函数C.增函数 D.减函数6.已知函数若函数有四个零点,零点从小到大依次为则的值为()A.2 B.C. D.7.已知函数则函数的最大值是A.4 B.3C.5 D.8.若则一定有A. B.C. D.9.“是第一象限角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.半径为,圆心角为弧度的扇形的面积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若在上是增函数,且直线与的图象在上恰有一个交点,则的取值范围是________.12.函数恒过定点为__________13.已知圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是__.(请填写:相切、相交、相离)14.两圆x2+y2+6x-4y+9=0和x2+y2-6x+12y-19=0的位置关系是___________________.15.已知在平面直角坐标系中,角顶点在原点,始边与轴的正半轴重合,终边经过点,则___________.16.在正方体中,则异面直线与的夹角为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,()求及()若的最小值是,求的值18.已知函数是偶函数(1)求实数的值;(2)若函数的最小值为,求实数的值;(3)当为何值时,讨论关于的方程的根的个数19.已知向量,(1)若,求的值;(2)若,,求的值域20.已知函数部分图象如图所示,点为函数的图象与y轴的一个交点,点B为函数图象上的一个最高点,且点B的横坐标为,点为函数的图象与x轴的一个交点(1)求函数的解析式;(2)已知函数的值域为,求a,b的值21.某网上电子商城销售甲、乙两种品牌的固态硬盘,甲、乙两种品牌的固态硬盘保修期均为3年,现从该商城已售出的甲、乙两种品牌的固态硬盘中各随机抽取50个,统计这些固态硬盘首次出现故障发生在保修期内的数据如下:型号甲乙首次出现故障的时间x(年)硬盘数(个)212123假设甲、乙两种品牌的固态硬盘首次出现故障相互独立.(1)从该商城销售的甲品牌固态硬盘中随机抽取一个,试估计首次出现故障发生在保修期内的概率;(2)某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,试估计恰有一个首次出现故障发生在保修期的第3年(即)的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】∵a∥α,∴a与α没有公共点,b⊂α,∴a、b没有公共点,∴a、b平行或异面故选D.2、C【解题分析】由可求得,然后将经三角变换后用表示,于是可得所求【题目详解】∵,∴,解得或∵,∴∴故选C【题目点拨】对于给值求值的问题,解答时注意将条件和所求值的式子进行适当的化简,然后合理地运用条件达到求解的目的,解题的关键进行三角恒等变换,考查变换转化能力和运算能力3、C【解题分析】函数的定义域为所以函数为奇函数;函数是非奇非偶函数;函数的图象关于y轴对称,所以该函数是偶函数;函数的对称轴方程为x=−1,抛物线不关于y轴对称,所以该函数不是偶函数.故选C.4、B【解题分析】定义域为,定义域为R,均关于原点对称因为,所以f(x)是奇函数,因为,所以g(x)是偶函数,选B.5、D【解题分析】幂函数是经过点,设幂函数为,将点代入得到此时函数定义域上是减函数,故选D6、C【解题分析】函数有四个零点,即与图象有4个不同交点,可设四个交点横坐标满足,由图象,结合对数函数的性质,进一步求得,利用对称性得到,从而可得结果.【题目详解】作出函数的图象如图,函数有四个零点,即与的图象有4个不同交点,不妨设四个交点横坐标满足,则,,,可得,由,得,则,可得,即,,故选C.【题目点拨】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.7、B【解题分析】,从而当时,∴的最大值是考点:与三角函数有关的最值问题8、D【解题分析】本题主要考查不等关系.已知,所以,所以,故.故选9、B【解题分析】根据充分、必要条件的定义,结合角的概念,即可得答案.【题目详解】若是第一象限角,则,无法得到一定属于,充分性不成立,若,则一定第一象限角,必要性成立,所以“是第一象限角”是“”的必要不充分条件.故选:B10、A【解题分析】由扇形面积公式计算【题目详解】由题意,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由正弦函数的单调性以及图象的分析得出的取值范围.【题目详解】因为在上是增函数,所以,解得因为直线与的图象在上恰有一个交点,所以,解得,综上.故答案为:12、【解题分析】当时,,故恒过点睛:函数图象过定点问题,主要有指数函数过定点,对数函数过定点,幂函数过点,注意整体思维,整体赋值求解13、相交【解题分析】求得的圆心到直线的距离,与圆的半径比较大小,即可得出结论.【题目详解】圆的圆心为、半径为,圆心到直线的距离为,小于半径,所以直线和圆相交,故答案为相交.【题目点拨】本题主要考查直线和圆的位置关系的判断方法,点到直线的距离公式的应用,属于基础题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,考虑运用判别式来解答.14、外切【解题分析】先把两个圆的方程变为标准方程,分别得到圆心坐标和半径,然后利用两点间的距离公式求出两个圆心之间的距离与半径比较大小来判别得到这两个圆的位置关系【题目详解】由x2+y2+6x-4y+9=0得:(x+3)2+(y-2)2=4,圆心O(-3,2),半径为r=2;由x2+y2-6x+12y-19=0得:(x-3)2+(y+6)2=64,圆心P(3,-6),半径为R=8则两个圆心的距离,所以两圆的位置关系是:外切即答案为外切【题目点拨】本题考查学生会利用两点间的距离公式求两点的距离,会根据两个圆心之间的距离与半径相加相减的大小比较得到圆与圆的位置关系15、【解题分析】根据角的终边经过点,利用三角函数的定义求得,然后利用二倍角公式求解.【题目详解】因为角的终边经过点,所以,所以,所以,故答案为:16、【解题分析】先证明,可得或其补角即为异面直线与所成的角,连接,在中求即可.【题目详解】在正方体中,,所以,所以四边形是平行四边形,所以,所以或其补角即为异面直线与所成的角,连接,由为正方体可得是等边三角形,所以.故答案为:【题目点拨】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)利用平面向量的数量积公式、模长公式求解;(2)将的值域,转化为关于的一元二次函数的值域,根据【题目详解】(1),,(2),,,,当时,当且仅当时,取最小值,解得;当时,当且仅当时,取最小值,解得(舍);当时,当且仅当时,取最小值,解得(舍去),综上所述,.【题目点拨】本题主要考查求平面向量的数量积,向量的模,以及由函数的最值求参数的问题,熟记平面向量数量积的坐标表示,向量模的坐标表示,以及三角函数的性质即可,属于常考题型.18、(1)(2)(3)当时,方程有一个根;当时,方程没有根;当或或时,方程有两个根;当时,方程有三个根;当时,方程有四个根【解题分析】(1)利用偶函数满足,求出的值;(2)对函数变形后利用二次函数的最值求的值;(3)定义法得到的单调性,方程通过换元后得到的根的情况,通过分类讨论最终求出结果.【小问1详解】由题意得:,即,所以,其中,∴,解得:【小问2详解】,∴,故函数的最小值为,令,故的最小值为,等价于,解得:或,无解综上:【小问3详解】由,令,,有由,有,,可得,可知函数为增函数,故当时,函数单调递增,由函数为偶函数,可知函数的增区间为,减区间为,令,有,方程(记为方程①)可化为,整理为:(记为方程②),,当时,有,此时方程②无解,可得方程①无解;当时,时,方程②的解为,可得方程①仅有一个解为;时,方程②的解为,可得方程①有两个解;当时,可得或,1°当方程②有零根时,,此时方程②还有一根为,可得此时方程①有三个解;2°当方程②有两负根时,可得,不可能;3°当方程②有两正根时,可得:,又由,可得,此时方程①有四个根;4°当方程②有一正根一负根时,,可得:或,又由,可得或,此时方程①有两个根,由上知:当时,方程①有一个根;当时,方程①没有根;当或或时,方程①有两个根;当时,方程①有三个根;当时,方程①有四个根【题目点拨】对于复合函数根的个数问题,要用换元法来求解,通常方法会用到根的判别式,导函数,基本不等式等.19、(1)(2)【解题分析】(1)根据的坐标关系,得到,再代入即可求值.(2)用正弦、余弦,二倍角公式和辅助角公式化简,得到,根据,求出的值域.详解】(1)若,则,∴.∴.(2),∵,∴,∴,∴,∴的值域为【题目点拨】本题第一问主要考查向量平行的坐标表示和正切二倍角公式,考查计算能力.第二问主要考查正弦,余弦的二倍角公式和辅助角公式以及三角函数的值域问题,属于中档题.20、(1)(2)或【解题分析】(1)根据图象可得函数的周期,利用求出,根据五点画图法求出,根据点A坐标求出A,进而得出解析式;(2)根据三角函数的性质求出的值域,由(1)知,对的取值分类讨论,列出方程组,解之即可.【小问1详解】由函数的部分图象可知,函数的周期,可得,由五点画图法可知,可得,有,又由,可得,故有函数的解析式为;【小问2详解】由(1)知,函数的值域为①当时,解得;②当时,解得由上知或21、(1);(2)【解题分析】(1)由频率表示概率即可求出;(2)先分别求出从甲、乙两种品牌随机抽取一个,首次出现故障发生在保修期的第3年的概率,即可求出恰有一个首次出现故障发生在保修期的第3年的概率.【题目详解】解:(1)在图表中,甲品牌的个样本中,首次出现故障发生在保修期内的概率为:,设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论