




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省深州市长江中学2024届高一上数学期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既在R上单调递增,又是奇函数的是()A. B.C. D.2.函数y=sin2x,xR的最小正周期是()A.3π B.πC.2 D.13.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图象可能是A. B.C. D.4.若,则值为()A. B.C. D.75.已知,,则的值为()A. B.C. D.6.已知函数,则等于A.2 B.4C.1 D.7.已知命题p:“”,则为()A. B.C. D.8.已知函数,,则函数的零点个数不可能是()A.2个 B.3个C.4个 D.5个9.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若.则()A. B.C.2 D.10.二次函数中,,则函数的零点个数是A.个 B.个C.个 D.无法确定二、填空题:本大题共6小题,每小题5分,共30分。11.已知点P(-,1),点Q在y轴上,直线PQ的倾斜角为120°,则点Q的坐标为_____12.已知是定义在上的奇函数,且为偶函数,对于函数有下列几种描述:①是周期函数;②是它的一条对称轴;③是它图象的一个对称中心;④当时,它一定取最大值;其中描述正确的是__________13.如图,在平面直角坐标系中,矩形的顶点、分别在轴非负半轴和轴的非负半轴上滑动,顶点在第一象限内,,,设.若,则点的坐标为______;若,则的取值范围为______.14.已知偶函数是区间上单调递增,则满足的取值集合是__________15.已知函数,则的值是________16.点是一次函数图象上一动点,则的最小值是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.汕头市某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?18.已知函数为定义在R上的奇函数(1)求实数m,n的值;(2)解关于x的不等式19.设函数为常数,且的部分图象如图所示.(1)求函数的表达式;(2)求函数的单调减区间;(3)若,求的值.20.已知实数是定义在上的奇函数.(1)求的值;(2)求函数的值域;(3)当时,恒成立,求实数的取值范围.21.已知函数.(1)求的单调区间;(2)若,且,求值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】逐一判断每个函数的单调性和奇偶性即可.【题目详解】是奇函数,但在R上不单调递增,故A不满足题意;既在R上单调递增,又是奇函数,故B满足题意;、不是奇函数,故C、D不满足题意;故选:B2、B【解题分析】根据解析式可直接求出最小正周期.【题目详解】函数的最小正周期为.故选:B.3、A【解题分析】汽车启动加速过程,随时间增加路程增加的越来越快,汉使图像是凹形,然后匀速运动,路程是均匀增加即函数图像是直线,最后减速并停止,其路程仍在增加,只是增加的越来越慢即函数图像是凸形.故选A考点:函数图像的特征4、B【解题分析】根据两角和的正切公式,结合同角的三角函数关系式中商关系进行求解即可.【题目详解】由,所以,故选:B5、C【解题分析】分析可知,由可求得的值.【题目详解】因为,则,因为,所以,,因此,.故选:C.6、A【解题分析】由题设有,所以,选A7、C【解题分析】根据命题的否定的定义判断【题目详解】特称命题的否定是全称命题命题p:“”,的否定为:故选:C8、B【解题分析】由可得或,然后画出的图象,结合图象可分析出答案.【题目详解】由可得或的图象如下:所以当时,,此时无零点,有2个零点,所以的零点个数为2;当时,,此时有2个零点,有2个零点,所以的零点个数为4;当时,,此时有4个零点,有2个零点,所以的零点个数为6;当时,,此时有3个零点,有2个零点,所以的零点个数为5;当且时,此时有2个零点,有2个零点,所以的零点个数为4;当时,,此时的零点个数为2;当时,,此时有2个零点,有3个零点,所以的零点个数为5;当时,,此时有2个零点,有4个零点,所以的零点个数为6;当时,,此时有2个零点,有2个零点,所以零点个数为4;当时,,此时有2个零点,无零点,所以的零点个数为2;综上:的零点个数可以为2、4、5、6,故选:B9、A【解题分析】由已知、同角三角函数关系、辅助角公式及诱导公式可得解.【题目详解】由得,∴.故选:A.10、C【解题分析】计算得出的符号,由此可得出结论.【题目详解】由已知条件可得,因此,函数的零点个数为.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、(0,-2)【解题分析】设点坐标为,利用斜率与倾斜角关系可知,解得即可.【题目详解】因为在轴上,所以可设点坐标为,又因为,则,解得,因此,故答案为.【题目点拨】本题主要考查了直线的斜率计算公式与倾斜角的正切之间的关系,属于基础题.12、①③【解题分析】先对已知是定义在的奇函数,且为偶函数用定义转化为恒等式,再由两个恒等式进行合理变形得出与四个命题有关的结论,通过推理证得①③正确.【题目详解】因为为偶函数,所以,即是它的一条对称轴;又因为是定义在上的奇函数,所以,即,则,,即是周期函数,即①正确;因为是它的一条对称轴且,所以()是它的对称轴,即②错误;因为函数是奇函数且是以为周期周期函数,所以,所以是它图象的一个对称中心,即③正确;因为是它的一条对称轴,所以当时,函数取得最大值或最小值,即④不正确.故答案为:①③.13、①.②.【解题分析】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,设点、,根据锐角三角函数的定义可得出点、的坐标,然后利用平面向量数量积的坐标运算和二倍角的正弦公式可求出的取值范围.【题目详解】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,如下图所示:则,设点、,则,,,.当时,,,则点;由上可知,,,则,因此,的取值范围是.故答案为:;.【题目点拨】本题考查点的坐标的计算,同时也考查了平面向量数量积的取值范围的求解,解题的关键就是将点的坐标利用三角函数表示,考查运算求解能力,属于中等题.14、【解题分析】因为为偶函数,所以等价于,又是区间上单调递增,所以.解得.答案为:.点睛:本题属于对函数单调性应用的考查,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.15、-1【解题分析】利用分段函数的解析式,代入即可求解.【题目详解】解:因为,则.故答案为:-116、【解题分析】把点代入函数的解析式得到,然后利用基本不等式求最小值.【题目详解】由题意可知,又因为,所以,当且仅当即时等号成立所以的最小值是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2400(元);(2)应将售价定为125元,最大销售利润是2500元.【解题分析】(1)由销售利润=单件成本×销售量,即可求商家降价前每星期销售利润;(2)由题意得,根据二次函数的性质即可知最大销售利润及对应的售价.【题目详解】(1)由题意,商家降价前每星期的销售利润为(元);(2)设售价定为元,则销售利润.当时,有最大值2500.∴应将售价定为125元,最大销售利润是2500元.18、(1)(2)答案详见解析【解题分析】(1)利用以及求得的值.(2)利用函数的奇偶性、单调性化简不等式,对进行分类讨论,由此求得不等式的解集.【小问1详解】由于是定义在R上的奇函数,所以,所以,由于是奇函数,所以,所以,即,所以.【小问2详解】由(1)得,任取,,由于,所以,,所以在上递增.不等式,即,,,,,,①.当时,①即,不等式①的解集为空集.当时,不等式①的解集为.当时,不等式①的解集为.19、(1)(2)(3)【解题分析】(1)由图可以得到,,故,而的图像过,故而,结合得到.(2)利用复合函数的单调性来求所给函数的单调减区间,可令,解得函数的减区间为.(3)由得,而,所以.解析:(1)根据图象得,又,所以.又过点,所以,又,所以得:.(2)由得:.即函数的单调减区间为.(3)由,得,所以..20、(1);(2);(3).【解题分析】(1)由是定义在上的奇函数,利用可得的值;(2)化简利用指数函数的值域以及不等式的性质可得函数的值域;(3)应用参数分离可得利用换元法可得,,转化为,,转化为求最值即可求解.【题目详解】(1)因为是定义在上的奇函数,所以对于恒成立,所以,解得,当时,,此时,所以时,是奇函数.(2)由(1)可得,因为,可得,所以,所以,所以,所以函数的值域为;(3)由可得,即,可得对于恒成立,令,则,函数在区间单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司消防部门管理制度
- 嘉兴南湖学院管理制度
- 平台项目商务方案(3篇)
- 公司软件资产管理制度
- 劳务公司工程管理制度
- 公路安全设施方案(3篇)
- 小区走廊经营方案(3篇)
- 小学爱心之家管理制度
- 城管岗亭改造方案(3篇)
- 学校资产动态管理制度
- 江苏省淮安市淮阴区淮阴中学2025届高一下生物期末质量检测试题含解析
- 2024届江苏省淮安市数学高一下期末考试试题含解析
- 2024年安徽六安裕安投资集团裕安融资担保有限公司招聘笔试参考题库含答案解析
- MOOC 化工原理(下册)-大连理工大学 中国大学慕课答案
- 公共政策导论全套教学课件
- 车间统计员培训课件
- 平台印刷机-机械原理课程设计报告
- 项目技术经济分析报告
- 《动物解剖学》课件
- 2024届龙岩市五县八年级物理第二学期期末考试试题含解析
- 牙齿异位种植体植入后的骨重建研究
评论
0/150
提交评论