云南省曲靖市宜良县第八中学2024届高一上数学期末质量检测模拟试题含解析_第1页
云南省曲靖市宜良县第八中学2024届高一上数学期末质量检测模拟试题含解析_第2页
云南省曲靖市宜良县第八中学2024届高一上数学期末质量检测模拟试题含解析_第3页
云南省曲靖市宜良县第八中学2024届高一上数学期末质量检测模拟试题含解析_第4页
云南省曲靖市宜良县第八中学2024届高一上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市宜良县第八中学2024届高一上数学期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数fx的图象向右平移φφ>0个单位长度,得到函数gx=sinx+π6的图象.A.π6 B.C.2π3 D.2.过点且与原点距离最大的直线方程是()A. B.C. D.3.已知,,,则的大小关系为A. B.C. D.4.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.5.若,则是()A.第一象限或第三象限角 B.第二象限或第四象限角C.第三象限或第四象限角 D.第二象限或第三象限角6.如果幂函数的图象经过点,则在定义域内A.为增函数 B.为减函数C.有最小值 D.有最大值7.若则一定有A. B.C. D.8.已知,则()A. B.C. D.9.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.10.已知函数在上是减函数,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在上的函数满足,且当时,.若对任意,恒成立,则实数的取值范围是______12.已知集合,,则_________.13.已知f(x)是定义在R上的偶函数,且在区间(−∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-2),则a的取值范围是14.已知,,且,则的最小值为______15.已知函数,则______,若,则______.16.已知,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,侧面底面,侧棱,底面为直角梯形,其中为中点.(1)求证:平面;(2)求异面直线与所成角的余弦值;(3)线段上是否存在,使得它到平面的距离为?若存在,求出的值.18.已知函数是指数函数(1)求的解析式;(2)若,求的取值范围19.已知函数的部分图象如图所示(1)求的解析式;(2)将图象上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图象向右平移个单位长度,得到函数的图象.若在区间上不单调,求的取值范围20.在三棱柱中,侧棱底面,点是的中点.(1)求证:;(2)求证:;(3)求直线与平面所成的角的正切值.21.已知函数的图象过点(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若为偶函数,求实数的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据正弦型函数图象变换的性质,结合零点的定义和正弦型函数的性质进行求解即可.【题目详解】因为函数fx的图象向右平移φφ>0个单位长度,得到函数gx=sinx+π6的图象,所以函数因为x=0是函数Fx所以F0=f0所以sinφ+π6=1解得:φ=2kπ(k∈Z),或φ=2kπ+2π3(k∈Z)当φ=2kπ(k∈Z)时,因为φ>0,所以φ的最小值是2π,当φ=2kπ+2π3(k∈Z)时,因为φ>0,所以φ综上所述φ的最小值是2π3故选:C2、A【解题分析】首先根据题意得到过点且与垂直的直线为所求直线,再求直线方程即可.【题目详解】由题知:过点且与原点距离最大的直线为过点且与垂直的直线.因为,故所求直线为,即.故选:A【题目点拨】本题主要考查直线方程的求解,数形结合为解题的关键,属于简单题.3、A【解题分析】利用利用等中间值区分各个数值的大小【题目详解】;;故故选A【题目点拨】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待4、B【解题分析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【题目详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.5、D【解题分析】由已知可得即可判断.【题目详解】,即,则且,是第二象限或第三象限角.故选:D.6、C【解题分析】由幂函数的图象经过点,得到,由此能求出函数的单调性和最值【题目详解】解:幂函数的图象经过点,,解得,,在递减,在递增,有最小值,无最大值故选【题目点拨】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答7、D【解题分析】本题主要考查不等关系.已知,所以,所以,故.故选8、A【解题分析】利用诱导公式及正弦函数的单调性可判断的大小,利用正切函数的单调性可判断的范围,从而可得正确的选项.【题目详解】,,因为,故,而,因为,故,故,综上,,故选:A9、A【解题分析】先考虑函数在上是增函数,再利用复合函数的单调性得出求解即可.【题目详解】设函数在上是增函数,解得故选:A【题目点拨】本题主要考查了由复合函数的单调性求参数范围,属于中档题.10、C【解题分析】根据函数是上的减函数,则两段函数都是减函数,并且在分界点处需满足不等式,列不等式求实数的取值范围.【题目详解】由条件可知,函数在上是减函数,需满足,解得:.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据题意求出函数和图像,画出图像根据图像解题即可.【题目详解】因为满足,即;又由,可得,因为当时,所以当时,,所以,即;所以当时,,所以,即;根据解析式画出函数部分图像如下所示;因为对任意,恒成立,根据图像当时,函数与图像交于点,即的横坐标即为的最大值才能符合题意,所以,解得,所以实数的取值范围是:.故答案为:.12、【解题分析】由对数函数单调性,求出集合A,再根据交集的定义即可求解.【题目详解】解:,,,故答案为:.13、(【解题分析】由题意f(x)在(0,+∞)上单调递减,又f(x)是偶函数,则不等式f(2a-1)>f(-2)可化为f(214、6【解题分析】由可知,要使取最小值,只需最小即可,故结合,求出的最小值即可求解.【题目详解】由,,得(当且仅当时,等号成立),又因,得,即,由,,解得,即,故.因此当时,取最小值6.故答案为:6.15、①.15②.-3或【解题分析】根据分段函数直接由内到外计算即可求,当时,分段讨论即可求解.【题目详解】,,时,若,则,解得或(舍去),若,则,解得,综上,或,故答案为:15;-3或【题目点拨】本题主要考查了分段函数的解析式,已知自变量求函数值,已知函数值求自变量,属于容易题.16、【解题分析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3)存在,..【解题分析】(1)根据线面垂直的判定定理可知,只需证直线PO垂直平面ABCD中的两条相交直线垂直即可;(2)先通过平移将两条异面直线平移到同一个起点B,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp-DQC=VQ-PCD,即可得出结论试题解析:(1)证明:在中为中点,所以.又侧面底面,平面平面平面,所以平面.(2)解:连接,在直角梯形中,,有且,所以四边形是平行四边形,所以.由(1)知为锐角,所以是异面直线与所成的角,因为,在中,,所以,在中,因为,所以,在中,,所以,所以异面直线与所成的角的余弦值为.(3)解:假设存在点,使得它到平面的距离为.设,则,由(2)得,在中,,所以,由得,所以存在点满足题意,此时.18、(1)(2)【解题分析】(1)由指数函数定义可直接构造方程组求得,进而得到所求解析式;(2)将不等式化为,根据对数函数单调性和定义域要求可构造不等式组求得结果.【小问1详解】为指数函数,,解得:,.【小问2详解】由(1)知:,,解得:,的取值范围为.19、(1);(2)【解题分析】(1)利用最值求出,根据得出,再由特殊值求出即可求解.(2)根据三角函数的图象变换得出,再由正弦函数在上单调即可求解.【题目详解】解:(1)由图可知,最小正周期,所以因为,所以,,,又,所以,故(2)由题可知,当时,因为在区间上不单调,所以,解得故的取值范围为20、(1)见解析(2)见解析(3)【解题分析】【试题分析】(1)依据题设运用线面平行的判定定理进行分析推证;(2)借助题设条件先证明线面垂直,再运用线面垂直的性质定理进行推证;(3)先运用线面角的定义找出线面角,再运用解三角形求其正切值:(1)如图,令分别为的中点,又∵(2)证明:∠⊥在直三棱柱中,⊥又⊥平面,又⊥(3)由(2)得AC⊥平面∴直线是斜线在平面上的射影∴是直线与平面所成的角.在中,∴,即求直线与平面的正切值为.点睛:立体几何是高中数学重点内容之一,也是高考重点考查的考点和热点.这类问题的设置目的是考查空间线面的位置关系及角度距离的计算.求解本题第一问时,直接依据题设运用线面平行的判定定理进行分析推证;求解第二问,充分借助题设条件先证明线面垂直,再运用线面垂直的性质定理从而使得问题获证;求解第三问时,先运用线面角的定义找出线面角,再运用解三角形求其正切值使得问题获解21、(1)(2)(3)【解题分析】(1)函数图象过,代入计算可求出的值,结合对数函数的性质可求出函数的值域;(2)构造函数,求出它在上的值域,即可求出的取值范围;(3)利用偶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论