广西桂林全州县石塘中学2024届数学高一上期末考试试题含解析_第1页
广西桂林全州县石塘中学2024届数学高一上期末考试试题含解析_第2页
广西桂林全州县石塘中学2024届数学高一上期末考试试题含解析_第3页
广西桂林全州县石塘中学2024届数学高一上期末考试试题含解析_第4页
广西桂林全州县石塘中学2024届数学高一上期末考试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西桂林全州县石塘中学2024届数学高一上期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是偶函数,又是(0,+∞)上的减函数的是()A. B.C. D.2.给出下列四个命题:①底面是正多边形的棱柱是正棱柱;②四棱柱、四棱台、五棱锥都是六面体;③所有棱长相等的棱柱一定是直棱柱;④直角三角形绕其一条边所在的直线旋转一周形成的几何体是圆锥其中正确的命题个数是()A.0 B.1C.2 D.33.已知点(a,2)在幂函数的图象上,则函数f(x)的解析式是()A. B.C. D.4.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则=A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}5.函数的定义域为A B.C. D.6.满足的集合的个数为()A. B.C. D.7.已知圆:与圆:,则两圆的位置关系是A.相交 B.相离C.内切 D.外切8.已知幂函数过点,则在其定义域内()A.为偶函数 B.为奇函数C.有最大值 D.有最小值9.在新冠肺炎疫情初始阶段,可以用指数模型::I(t)=ert(其中r为指数增长率)描述累计感染病例数I(t)随时间t(单位:天)的变化规律.有学者基于已有数据估计出累计感染病例数增加1倍需要的时间约为2天,据此,在新冠肺炎疫情初始阶段,指数增长率r的值约为()(参考数值:ln20.69)A.0.345 B.0.23C.0.69 D.0.83110.已知函数则()A.- B.2C.4 D.11二、填空题:本大题共6小题,每小题5分,共30分。11.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为____12.空间两点与的距离是___________.13.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.14.设函数,则__________15.若坐标原点在圆的外部,则实数m的取值范围是___16.设函数,其图象的一条对称轴在区间内,且的最小正周期大于,则的取值范围是____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(Ⅰ)求函数的单调递减区间;(Ⅱ)若函数的图象向右平移个单位长度后,所得的图象对应的函数为,且当,时,,求的值18.在中,已知,,且AC边的中点M在y轴上,BC边的中点N在x轴上,求:顶点C的坐标;

直线MN的方程19.冰雪装备器材产业是冰雪产业的重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?20.已知α是第二象限角,且tanα=-(1)求sinα,cos(2)求sinα-5π+21.已知直线与相交于点,直线(1)若点在直线上,求的值;(2)若直线交直线,分别为点和点,且点的坐标为,求的外接圆的标准方程

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【题目详解】解:根据题意,依次分析选项:对于,是奇函数,不符合题意;对于,,是指数函数,不是偶函数,不符合题意;对于,,是偶函数,但在上是增函数,不符合题意;对于,,为开口向下的二次函数,既是偶函数,又是上的减函数,符合题意;故选.【题目点拨】本题考查函数单调性与奇偶性的判断,关键是掌握常见函数的奇偶性与单调性,属于基础题.2、B【解题分析】利用几何体的结构特征,几何体的定义,逐项判断选项的正误即可【题目详解】解:①底面是正多边形,侧棱与底面垂直的棱柱是正棱柱;所以①不正确;②四棱柱、四棱台、五棱锥都是六面体;满足多面体的定义,所以②正确;③所有棱长相等的棱柱一定是直棱柱;不满足直棱柱的定义,所以③不正确;④直角三角形绕直角边所在的直线旋转一周形成的几何体是圆锥.所以④不正确;故选:B3、A【解题分析】由幂函数的定义解出a,再把点代入解出b.【题目详解】∵函数是幂函数,∴,即,∴点(4,2)在幂函数的图象上,∴,故故选:A.4、C【解题分析】根据补集的运算得.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误5、C【解题分析】要使得有意义,要满足真数大于0,且分母不能为0,即可求出定义域.【题目详解】要使得有意义,则要满足,解得.答案为C.【题目点拨】常见的定义域求解要满足:(1)分式:分母0;(2)偶次根式:被开方数0;(3)0次幂:底数0;(4)对数式:真数,底数且;(5):;6、B【解题分析】列举出符合条件的集合,即可得出答案.【题目详解】满足的集合有:、、.因此,满足的集合的个数为.故选:B.【题目点拨】本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.7、C【解题分析】分析:求出圆心的距离,与半径的和差的绝对值比较得出结论详解:圆,圆,,所以内切.故选C点睛:两圆的位置关系判断如下:设圆心距为,半径分别为,则:,内含;,内切;,相交;,外切;,外离8、A【解题分析】设幂函数为,代入点,得到,判断函数的奇偶性和值域得到答案.【题目详解】设幂函数为,代入点,即,定义域为,为偶函数且故选:【题目点拨】本题考查了幂函数的奇偶性和值域,意在考查学生对于函数性质的综合应用.9、A【解题分析】由题设可知第天感染病例数为,则第天的感染感染病例数为,由感染病例数增加1倍需要的时间约为2天,则,解出即可得出答案.【题目详解】由题设可知第天感染病例数为,则第天的感染感染病例数为由感染病例数增加1倍需要的时间约为2天,则所以,即所以故选:A10、C【解题分析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【题目详解】由题意,函数,可得,所以.故选:C.【题目点拨】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】解直角三角形AOC,求出半径AO,代入弧长公式求出弧长的值解:如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,并延长OC交于D,则∠AOD=∠BOD=1,AC=AB=1Rt△AOC中,r=AO==,从而弧长为α×r=2×=,故答案为考点:弧长公式12、【解题分析】根据两点间的距离求得正确答案.【题目详解】.故答案为:13、【解题分析】根据图象先求出函数的解析式,然后由已知构造不等式0.25,解不等式可得每毫升血液中含药量不少于0.25微克的起始时刻和结束时刻,他们之间的差值即为服药一次治疗疾病有效的时间【题目详解】解:当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有,解得,所以,所以服药一次治疗疾病有效的时间为个小时,故答案为:.14、【解题分析】先根据2的范围确定表达式,求出;后再根据的范围确定表达式,求出.【题目详解】因为,所以,所以.【题目点拨】分段函数求值问题,要先根据自变量的范围,确定表达式,然后代入求值.要注意由内而外求值,属于基础题.15、【解题分析】方程表示圆,得,根据点在圆外,得不等式,解不等式可得结果.【题目详解】圆的标准方程为,则,若坐标原点在圆的外部,则,解得,则实数m的取值范围是,故答案为:【题目点拨】本题考查圆的一般方程,考查点与圆的位置关系的应用,属于简单题.16、【解题分析】由题可得,利用正弦函数的性质可得对称轴为,结合条件即得.【题目详解】∵,由,得,当时,,则,解得此时,当时,,则,解得此时,不合题意,当取其它整数时,不合题意,∴.故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ).【解题分析】Ⅰ由三角函数的单调性可得函数的单调递减区间;Ⅱ由三角函数图象的平移得的解析式,由诱导公式及角的范围得:,所以,代入运算得解【题目详解】Ⅰ由,解得:,即函数的单调递减区间为:,;Ⅱ将函数的图象向右平移个单位长度后,所得的图象对应的函数为,得,又,即,由,,得:,,由诱导公式可得,所以,所以,【题目点拨】本题考查了三角函数的单调性及三角函数图象的平移变换,涉及到诱导公式的应用及三角函数求值问题,属于中档题18、(1);(2)【解题分析】(1)边AC中点M在y轴上,由中点公式得,A,C两点的横坐标和的平均数为0,同理,B,C两点的纵坐标和的平均数为0.构造方程易得C点的坐标(2)根据C点的坐标,结合中点公式,我们可求出M,N两点的坐标,代入两点式即可求出直线MN的方程解:(1)设点C(x,y),∵边AC的中点M在y轴上得=0,∵边BC的中点N在x轴上得=0,解得x=﹣5,y=﹣3故所求点C的坐标是(﹣5,﹣3)(2)点M的坐标是(0,﹣),点N的坐标是(1,0),直线MN的方程是=,即5x﹣2y﹣5=0点评:在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况19、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解题分析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.20、(1)sinα=(2)713【解题分析】(1)解方程组sin2(2)直接利用诱导公式化简求值.【小问1详解】解:因为tanα=-5又sin2α+所以sinα=【小问2详解】解:sin=-21、(1);(2).【解题分析】(1)求出两直线的交点P坐标,代入方程可得;(2)把B坐标代入方程可得,由方程联立可解得A点坐标,可设圆的一般方程,代入三点坐标后可解得其中的参数,最后再配

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论