




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省峨山县大龙潭中学2024届高一上数学期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则方程的实数根的个数为()A. B.C. D.2.已知函数的图像如图所示,则函数与在同一坐标系中的图像是()A. B.C. D.3.若函数,则的单调递增区间为()A. B.C. D.4.设集合,,则集合=()A B.C. D.5.已知集合A={1,2,3},B={x∈N|x≤2},则A∪B=()A.{2,3} B.{0,1,2,3}C.{1,2} D.{1,2,3}6.关于函数,下列说法正确的是()A.最小值为0 B.函数为奇函数C.函数是周期为周期函数 D.函数在区间上单调递减7.和函数是同一函数的是()A. B.C. D.8.若在上单调递减,则的取值范围是().A. B.C. D.9.若函数f(x)=2x+3x+a在区间(0,1)A.(-∞,-5)C.(0,5) D.(1,+10.已知函数的上单调递减,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.求方程在区间内的实数根,用“二分法”确定的下一个有根的区间是____________.12.给出下列命题:①存在实数,使;②函数是偶函数;③若是第一象限角,且,则;④是函数的一条对称轴方程以上命题是真命题的是_______(填写序号)13.已知角的终边过点,则______14.已知,,若与的夹角是锐角,则的取值范围为______15.在△ABC中,,面积为12,则=______16.当时,函数取得最大值,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数f(x)的最小正周期和单调递增区间;(2)求函数f(x)在区间上的最大值和最小值18.已知函数且.(1)若,求的值;(2)若在上的最大值为,求的值.19.已知函数是定义在R上的奇函数.(1)求函数的解析式,判断并证明函数的单调性;(2)若存在实数,使成立,求实数的取值范围.20.已知函数的图象关于原点对称,其中为常数(1)求的值;(2)当时,恒成立,求实数的取值范围21.在平面直角坐标系中,锐角的顶点是坐标原点O,始边为x轴的非负半轴,终边上有一点(1)求的值;(2)若,且,求角的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由已知,可令,要求,即为,原题转化为直线与的图象的交点情况,通过画出函数的图象,讨论的取值,即可直线与的图象的交点情况.【题目详解】令,则,①当时,,,,即,②当时,,,画出函数的图象,如图所示,若,即,无解;若,直线与的图象有3个交点,即有3个不同实根;若,直线与的图象有2个交点,即有2个不同实根;综上所述,方程的实数根的个数为5个,故选:2、B【解题分析】由函数的图象可得,函数的图象过点,分别代入函数式,,解得,函数与都是增函数,只有选项符合题意,故选B.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.3、A【解题分析】令,则,根据解析式,先求出函数定义域,结合二次函数以及对数函数的性质,即可得出结果.【题目详解】令,则,由真数得,∵抛物线的开口向下,对称轴,∴在区间上单调递增,在区间上单调递减,又∵在定义域上单调递减,由复合函数的单调性可得:的单调递增区间为.故选:A.4、B【解题分析】先根据一元二次不等式和对数不等式的求解方法求得集合M、N,再由集合的交集运算可得选项【题目详解】解:由得,解得或,所以集合,由得,解得,所以集合,所以,故选:B5、B【解题分析】先求出集合B,再求A∪B.【题目详解】因为,所以.故选:B6、D【解题分析】根据三角函数的性质,得到的最小值为,可判定A不正确;根据奇偶性的定义和三角函数的奇偶性,可判定C不正确;举例可判定C不正确;根据三角函数的单调性,可判定D正确.【题目详解】由题意,函数,当时,可得,所以,当时,可得,所以,所以函数的最小值为,所以A不正确;又由,所以函数为偶函数,所以B不正确;因为,,所以,所以不是的周期,所以C不正确;当时,,,当时,,即函数在区间上单调递减,又因为,所以函数在区间上单调递减,所以D正确.故选:D.7、D【解题分析】根据相同的函数定义域,对应法则,值域都相同可知ABC不符合要求,D满足.【题目详解】的定义域为,值域为,对于A,与的对应法则不同,故不是同一个函数;对于B,的值域为,故不是同一个函数;对于C,的定义域为,故不是同一个函数;对于D,,故与是同一个函数.故选:D8、B【解题分析】令f(x)=,由题意得f(x)在上单调递增,且f(﹣1),由此能求出a的取值范围【题目详解】∵函数在上单调递减,令f(x)=,∴f(x)=在上单调递增,且f(﹣1)∴,解得a≤8故选B.【题目点拨】本题考查实数值的求法,注意函数的单调性的合理运用,属于基础题.9、B【解题分析】利用零点存在性定理知f(0)⋅f(1)<0,代入解不等式即可得解.【题目详解】函数f(x)=2x+3x+a由零点存在性定理知f(0)⋅f(1)<0,即1+a5+a<0所以实数a的取值范围是(-5,-1)故选:B10、C【解题分析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【题目详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【题目点拨】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据二分法的步骤可求得结果.【题目详解】令,因为,,,所以下一个有根的区间是.故答案为:12、②④【解题分析】根据三角函数的性质,依次分析各选项即可得答案.【题目详解】解:①因为,故不存在实数,使得成立,错误;②函数,由于是偶函数,故是偶函数,正确;③若,均为第一象限角,显然,故错误;④当时,,由于是函数的一条对称轴,故是函数的一条对称轴方程,正确.故正确的命题是:②④故答案为:②④13、【解题分析】根据三角函数的定义求出r即可.【题目详解】角的终边过点,,则,故答案为【题目点拨】本题主要考查三角函数值的计算,根据三角函数的定义是解决本题的关键.三角函数的定义将角的终边上的点的坐标和角的三角函数值联系到一起,.知道终边上的点的坐标即可求出角的三角函数值,反之也能求点的坐标.14、【解题分析】利用坐标表示出和,根据夹角为锐角可得且与不共线,从而构造出不等式解得结果.【题目详解】由题意得:,解得:又与不共线,解得:本题正确结果:【题目点拨】本题考查根据向量夹角求解参数范围问题,易错点是忽略两向量共线的情况.15、【解题分析】利用面积公式即可求出sinC.使用二倍角公式求出cos2C【题目详解】由题意,在中,,,面积为12,则,解得∴故答案为【题目点拨】本题考查了三角形的面积公式,二倍角公式在解三角形中的应用,其中解答中应用三角形的面积公式和余弦的倍角公式,合理余运算是解答的关键,着重考查了运算与求解能力,属于基础题16、##【解题分析】由辅助角公式,正弦函数的性质求出,,再根据两角和的正切和公式,诱导公式求.【题目详解】(其中,),当时,函数取得最大值∴,,即,,所以,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为,单调递增区间为,k∈Z;(2)最大值为,最小值为【解题分析】(1)先通过降幂公式化简得,进而求出最小正周期和单调递增区间;(2)通过,求出,进而求出最大值和最小值.【小问1详解】,∴函数f(x)的最小正周期为,令,k∈Z,则,k∈Z,∴函数f(x)的单调递增区间为,k∈Z【小问2详解】∵,∴,则,∴,∴函数f(x)的最大值为,最小值为18、(1);(2)或.【解题分析】(1)根据函数奇偶性的定义判断是奇函数,再由即可求解;(2)讨论和时,函数在上的单调性,根据单调性求出最值列方程,解方程可得的值.【小问1详解】因为的定义域为关于原点对称,,所以为奇函数,故.【小问2详解】,若,则单调递减,单调递增,可得为减函数,当时,,解得:,符合题意;若,则单调递增,单调递减,可得为增函数,当时,解得:,符合题意,综上所述:的值为或.19、(1),函数在上单调递减,证明见解析(2)【解题分析】(1)由为奇函数且定义域为R,则,即可求得,进而得到解析式;设,代入解析式中证得即可;(2)由奇函数,可将问题转化为,再利用单调性可得存在实数,使成立,即为存在实数,使成立,进而求解即可【题目详解】解:(1)为奇函数且定义域为R,所以,即,所以,所以,所以函数在R上单调递减,设,则,因为,所以,即,所以,所以,即,所以函数在上单调递减.(2)存在实数,使成立.由题,则存在实数,使成立,因为为奇函数,所以成立,又因为函数在R上单调递减,所以存在实数,使成立,即存在实数,使成立,而当时,,所以的取值范围是【题目点拨】本题考查利用函数奇偶性求解析式,考查定义法证明函数单调性,考查已知函数单调性求参数问题,考查转化思想和运算能力20、(1)(2)【解题分析】(1)函数的图象关于原点对称,所以为奇函数,有,代入即可得出的值;(2)时,恒成立转化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度水利枢纽工程承包管理协议
- 2025年度数据中心建设合同书
- 2025版货车驾驶员劳动合同解除条件及争议解决合同
- 2025版情感关怀离婚协议模板
- 2025年度矿山安全设施居间代理合同
- 二零二五版房屋屋顶光伏发电系统检测维修服务合同样本
- 二零二五年度水利工程建设贷款合同
- 二零二五年度特色小镇建设项目房屋拆迁工程承包合同
- 二零二五年度厂房办公室装修及安全防护合同
- 2025年度智能电网建设电气工程分包合同
- GB/T 1357-2008通用机械和重型机械用圆柱齿轮模数
- 疫苗冰箱温度记录表
- 围岩分类及围岩压力
- JB-QBL-EI-6000M火灾报警控制器安装使用说明书
- 汽车车身碰撞估损全套课件
- 安全学原理第2版-ppt课件(完整版)
- (完整版)形式发票模版(国际件通用)
- 员工职业发展通道图超级好用
- 1.进入网站httprlzy.0744cc.comzp并登录
- 附件1: MAIS听觉整合问卷 父母问卷(访谈) 一、 测试目的 1、了解聋儿
- 包河区政府采购中心询价文件
评论
0/150
提交评论