




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省菏泽一中2024届高一上数学期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数则的值为()A. B.C.0 D.12.已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是A. B.C. D.3.如图是函数的部分图象,则下列说法正确的是()A. B.C. D.4.下列不等式中成立的是()A.若,则 B.若,则C.若,则 D.若,则5.设则的值为A. B.C.2 D.6.函数与(且)在同一坐标系中的图象可能是()A. B.C. D.7.命题“,”的否定为()A., B.,C, D.,8.已知函数,则()A.5 B.2C.0 D.19.已知,则函数与函数的图象可能是()A. B.C. D.10.若,则()A. B.C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.现有两名剪纸艺人创作甲、乙两种作品,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名艺人上午创作的甲作品数和乙作品数,点Bi的横、纵坐标分别为第i名艺人下午创作的甲作品数和乙作品数,i=1,①该天上午第1名艺人创作的甲作品数比乙作品数少;②该天下午第1名艺人创作的乙作品数比第2名艺人创作的乙作品数少;③该天第1名艺人创作的作品总数比第2名艺人创作的作品总数少;④该天第2名艺人创作的作品总数比第1名艺人创作的作品总数少.其中所有正确结论序号是___________.12.函数中角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间.13.已知半径为的扇形的面积为,周长为,则________14.已知函数fx=log5x.若f15.函数fx=16.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;对于集合,,若这两个集合构成“鲸吞”,则的取值为____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业为抓住环境治理带来的历史性机遇,决定开发生产一款大型净水设备.生产这款设备的年固定成本为万元,每生产台需要另投入成本(万元),当年产量不足台时,万元,当年产量不少于台时,万元.若每台设备的售价为万元,经过市场分析,该企业生产的净水设备能全部售完(1)求年利润(万元)关于年产量(台)的函数关系式;(2)年产量为多少台时,该企业在这一款净水设备的生产中获利最大?最大利润是多少万元?18.已知定义域为的函数是奇函数.(1)求的值;(2)判断函数单调性(只写出结论即可);(3)若对任意的不等式恒成立,求实数的取值范围19.已知函数,(1)求函数最小正周期以及函数在区间上的最大值和最小值;(2)将函数图象的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,若,求实数的取值范围20.已知的三个内角所对的边分别为,且.(1)角的大小;(2)若点在边上,且,,求的面积;(3)在(2)的条件下,若,试求的长.21.已知,(1)若,求a的值;(2)若函数在内有且只有一个零点,求实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据分段函数解析式及指数对数的运算法则计算可得;【题目详解】解:因为,所以,所以,故选:D2、B【解题分析】要取得最小值,则与共线且反向即位于的中线上,中线长为设,则则当时,取最小值,故选第II卷(非选择题3、A【解题分析】先通过观察图像可得A和周期,根据周期公式可求出,再代入最高点坐标可得.【题目详解】由图像得,,则,,,得,又,.故选:A.4、B【解题分析】A,如时,,所以该选项错误;BCD,利用作差法比较大小分析得解.【题目详解】A.若,则错误,如时,,所以该选项错误;B.若,则,所以该选项正确;C.若,则,所以该选项错误;D.若,则,所以该选项错误.故选:B5、D【解题分析】由题意可先求f(2),然后代入f(f(2))=f(﹣1)可得结果.【题目详解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故选D【题目点拨】本题主要考查了分段函数的函数值的求解,解题的关键是需要判断不同的x所对应的函数解析式,属于基础试题6、B【解题分析】分析一次函数的单调性,可判断AD选项,然后由指数函数的单调性求得的范围,结合直线与轴的交点与点的位置关系可得出合适的选项.【题目详解】因为一次函数为直线,且函数单调递增,排除AD选项.对于B选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的上方,合乎题意;对于C选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的下方,不合乎题意.故选:B.7、B【解题分析】根据特称命题的否定为全称命题可得.【题目详解】根据特称命题的否定为全称命题,可得命题“,”的否定为“,”故选:B.8、C【解题分析】由分段函数,选择计算.【题目详解】由题意可得.故选:C.【题目点拨】本题考查分段函数的求值,属于简单题.9、D【解题分析】根据对数关系得,所以函数与函数的单调性相同即可得到选项.【题目详解】,所以,,不为1的情况下:,函数与函数的单调性相同,ABC均不满足,D满足题意.故选:D【题目点拨】此题考查函数图象的辨析,根据已知条件找出等量关系或不等关系,分析出函数的单调性得解.10、B【解题分析】应用倍角正余弦公式及商数关系将目标式化为,结合已知即可求值.【题目详解】由题意知,,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解题分析】根据点的坐标的意义结合图形逐个分析判断即可【题目详解】对于①,由题意可知,A1的横、纵坐标分别为第1名艺人上午创作的甲作品数和乙作品数,由图可知A1的横坐标小于纵坐标,所以该天上午第对于②,由题意可知,B1的纵坐标为第1名艺人下午创作的乙作品数,B2的纵坐标为第2名艺人下午创作的乙作品数,由图可知B1的纵坐标小于B2的纵坐标,所以该天下午第对于③,④,由图可知,A1,B1的横、纵坐标之和大于A2故答案为:①②④12、(1)(2),【解题分析】(1)根据角的终边经过点求,再由题意得周期求即可;(2)根据正弦函数的单调性求单调区间即可.【小问1详解】因为角的终边经过点,所以,若时,的最小值为可知,∴【小问2详解】令,解得故单调递增区间为:,13、【解题分析】根据扇形面积与周长公式代入列式,联立可求解半径.【题目详解】根据扇形面积公式得,周长公式得,联立可得.故答案为:14、1,2【解题分析】结合函数的定义域求出x的范围,分x=1,0<x<1以及1<x<2三种情况进行讨论即可.【题目详解】因为fx=log5x的定义域为0,+当x=1时,fx当0<x<1时,2-x>1,则fx<f2-x等价于log5x<log52-x,所以-当1<x<2时,0<2-x<1,则fx<f2-x等价于log5x<log52-x,所以log5x<-log5所以x的取值范围是1,2.故答案为:1,2.15、0【解题分析】先令t=cosx,则t∈-1,1,再将问题转化为关于【题目详解】解:令t=cosx,则则f(t)=t则函数f(t)在-1,1上为减函数,则f(t)即函数y=cos2x-2故答案为:0.16、0【解题分析】根据题中定义,结合子集的定义进行求解即可.【题目详解】当时,,显然,符合题意;当时,显然集合中元素是两个互为相反数的实数,而集合中的两个元素不互为相反数,所以集合、之间不存在子集关系,不符合题意,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当年产量为台时,该企业在这款净水设备的生产中获利润最大,最大为万元【解题分析】(1)分别在和两种情况下,由可得函数关系式;(2)利用二次函数性质、基本不等式可分别求得和时的最大值,比较即可得到结果.【小问1详解】当,时,;当,时,;综上所述:.【小问2详解】当,时,,则当时,的最大值为;当,时,(当且仅当,即时等号成立);当年产量为台时,该企业在这款净水设备的生产中获利润最大,最大为万元18、(1),;(2)见解析;(3).【解题分析】(1)根据函数奇偶性得,,解得的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为,再根据恒成立转化为对应函数最值问题,最后根据函数最值得结果.【题目详解】(1)在上是奇函数,∴,∴,∴,∴,∴,∴,∴,∴,经检验知:,∴,(2)由(1)可知,在上减函数.(3)对于恒成立,对于恒成立,在上是奇函数,对于恒成立,又在上是减函数,,即对于恒成立,而函数在上的最大值为2,,∴实数的取值范围为【题目点拨】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.19、(1);最大值为,最小值;(2).【解题分析】(1)由题可得,再利用正弦函数的性质即求;(2)由题可得,利用正弦函数的性质可知在上单调递增,进而可得,即得.【小问1详解】∵,,∴,∴函数的最小正周期为,当时,,,∴,故函数在区间上的最大值为,最小值;【小问2详解】由题可得,由,可得,故在上单调递增,又,,由可得,,解得,∴实数的取值范围为.20、(1);(2);(3).【解题分析】(1)由条件知,结合正弦定理得,整理得,可得,从而得.(2)由,得.在中,由正弦定理得.在中,由余弦定理可得.所以.(3)由,可得.在中,由余弦定理得试题解析:(1),由正弦定理得,∴,∴,∵,∴,∵,∴.(2)由,得,在中,由正弦定理知,∴,解得,设,在中,由余弦定理得,∴,整理得解得,∴;(3)∵,∴,在中,由余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公用房租赁合同范本
- 个人车库互换合同范本
- 单个房子改造合同范本
- 农田租合同范本
- 合伙创业餐厅合同范本
- ktv劳务合同范本
- 高压电工作业测试题及答案
- 出售二手房车库合同范本
- 兽医传染病学模拟试题及参考答案
- 仓储维保合同范本
- 生物产品检验检疫基础知识单选题100道及答案
- 江苏省中职《英语》学业水平考试备考试题集(含历年真题)
- 2025年合伙型公司新合伙人加入协议
- 2025年安全员之C证(专职安全员)考试题库
- 2025城市商铺买卖合同书
- 医院感染及其危害
- 2025年春新北师大版物理八年级下册课件 第六章 质量和密度 第一节 物体的质量及其测量
- 2024全国各省高考诗歌鉴赏真题及解析
- 《价值观培训》课件
- 《临床科研思维》课件
- GA/T 761-2024停车库(场)安全管理系统技术要求
评论
0/150
提交评论