河北省阜城中学 2024届高一上数学期末学业水平测试模拟试题含解析_第1页
河北省阜城中学 2024届高一上数学期末学业水平测试模拟试题含解析_第2页
河北省阜城中学 2024届高一上数学期末学业水平测试模拟试题含解析_第3页
河北省阜城中学 2024届高一上数学期末学业水平测试模拟试题含解析_第4页
河北省阜城中学 2024届高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省阜城中学2024届高一上数学期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则()A. B.C.{2} D.{-2,2}2.设实数t满足,则有()A. B.C. D.3.为了抗击新型冠状病毒肺炎,保障师生安全,学校决定每天对教室进行消毒工作,已知药物释放过程中,室内空气中含药量y()与时间t(h)成正比();药物释放完毕后,y与t的函数关系式为(a为常数,),据测定,当空气中每立方米的含药量降低到0.5()以下时,学生方可进教室,则学校应安排工作人员至少提前()分钟进行消毒工作A.25 B.30C.45 D.604.将函数的图象上所有点的横坐标缩短为原来的倍(纵坐标不变),再向右平移个单位,得到函数的图象,则函数的图象的一条对称轴为A. B.C. D.5.设,表示两条直线,,表示两个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则6.一个球的表面积是,那么这个球的体积为A. B.C. D.7.若cos(πA.-29C.-598.下列函数中,既是偶函数,又是(0,+∞)上的减函数的是()A. B.C. D.9.命题“任意实数”的否定是()A.任意实数 B.存在实数C.任意实数 D.存实数10.某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的表面积为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点角终边上一点,且,则______12.关于的不等式的解集是________13.已知,则__________14.已知函数,关于方程有四个不同的实数解,则的取值范围为__________15.已知函数,若,则______.16.已知函数且(1)若函数在区间上恒有意义,求实数的取值范围;(2)是否存在实数,使得函数在区间上为增函数,且最大值为?若存在,求出的值;若不存在,请说明理由三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB118.已知函数(1)求函数的最小正周期;(2)将函数的图象向左平移个单位长度得到函数的图象,若关于的方程在上有2个不等的实数解,求实数的取值范围19.在平面直角坐标系中,已知,,动点满足.(1)若,求面积的最大值;(2)已知,是否存在点C,使得,若存在,求点C的个数;若不存在,说明理由.20.设平面向量,,函数(Ⅰ)求时,函数的单调递增区间;(Ⅱ)若锐角满足,求的值21.命题p:方程x2+x+m=0有两个负数根;命题q:任意实数x∈R,mx2-2mx+1>0成立;若p与q都是真命题,求m取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】解一元二次不等式,求出集合B,解得集合A,根据集合的交集运算求得答案.【题目详解】由题意解得:,故,或,所以,故选:C2、B【解题分析】由,得到求解.【题目详解】解:因为,所以,所以,,则,故选:B3、C【解题分析】计算函数解析式,取计算得到答案.【题目详解】∵函数图像过点,∴,当时,取,解得小时分钟,所以学校应安排工作人员至少提前45分钟进行消毒工作.故选:C.4、C【解题分析】,所以,所以,所以是一条对称轴故选C5、D【解题分析】对选项进行一一判断,选项D为面面垂直判定定理.【题目详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【题目点拨】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.6、B【解题分析】先求球半径,再求球体积.【题目详解】因为,所以,选B.【题目点拨】本题考查球表面积与体积,考查基本求解能力,属基础题.7、C【解题分析】cos(π2-α)=sin8、D【解题分析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【题目详解】解:根据题意,依次分析选项:对于,是奇函数,不符合题意;对于,,是指数函数,不是偶函数,不符合题意;对于,,是偶函数,但在上是增函数,不符合题意;对于,,为开口向下的二次函数,既是偶函数,又是上的减函数,符合题意;故选.【题目点拨】本题考查函数单调性与奇偶性的判断,关键是掌握常见函数的奇偶性与单调性,属于基础题.9、B【解题分析】根据含全称量词的命题的否定求解.【题目详解】根据含量词命题的否定,命题“任意实数”的否定是存在实数,故选:B10、D【解题分析】由三视图知几何体为圆柱挖去一个圆锥所得的组合体,且圆锥与圆柱的底面直径都为4,高为2,则圆锥的母线长为,∴该几何体的表面积S=π×22+2π×2×2+π×2×2=(12+4)π,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用任意角的三角函数的定义,即可求得m值【题目详解】点角终边上一点,,则,故答案为【题目点拨】本题考查任意角的三角函数的定义,属于基础题12、【解题分析】不等式,可变形为:,所以.即,解得或.故答案为.13、【解题分析】将题干中的两个等式先平方再相加,利用两角差的余弦公式可求得结果.【题目详解】由,,两式相加有,可得故答案为:.14、【解题分析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.15、16或-2【解题分析】讨论和两种情况讨论,解方程,求的值.【题目详解】当时,,成立,当时,,成立,所以或.故答案为:或16、(1)(2)存在;(或)【解题分析】(1)由题意,得在上恒成立,参变分离得恒成立,再令新函数,判断函数的单调性,求解最大值,从而求出的取值范围;(2)在(1)的条件下,讨论与两种情况,利用复合函数同增异减的性质求解对应的取值范围,再利用最大值求解参数,并判断是否能取到.【小问1详解】由题意,在上恒成立,即在恒成立,令,则在上恒成立,令所以函数在在上单调递减,故则,即的取值范围为.【小问2详解】要使函数在区间上为增函数,首先在区间上恒有意义,于是由(1)可得,①当时,要使函数在区间上为增函数,则函数在上恒正且为增函数,故且,即,此时的最大值为即,满足题意②当时,要使函数在区间上为增函数,则函数在上恒正且为减函数,故且,即,此时的最大值为即,满足题意综上,存在(或)【题目点拨】一般关于不等式在给定区间上恒成立的问题都可转化为最值问题,参变分离后得恒成立,等价于;恒成立,等价于成立.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明详见解析;(2)证明详见解析.【解题分析】(1)通过证明,来证得平面.(2)通过证明平面,来证得平面平面.【题目详解】(1)由于分别是的中点,所以.由于平面,平面,所以平面.(2)由于平面,平面,所以.由于,所以平面,由于平面,所以平面平面.【题目点拨】本小题主要考查线面平行证明,考查面面垂直的证明,属于中档题.18、(1)(2)【解题分析】(1)利用三角恒等变换化简,由周期公式求解即可;(2)先求出的解析式,再把所求转化为方程在上有2个不等的实数解,令,根据图象即可求得结论【小问1详解】解:,即,所以函数的最小正周期为【小问2详解】解:由已知可得,方程在上有2个不等的实数解,即方程在上有2个不等的实数解令,因为,,,,,令,则,,作出函数图象如下图所示:要使方程在上有2个不等的实数解,则19、(1)(2)存在2个点C符合要求【解题分析】(1)由,利用两点间距离公式可得,整理得到,由,若面积最大,则到距离最大,即最大,求解即可;(2)由,利用两点间距离公式可得,整理得到,则点为圆与圆的交点,进而由两圆的位置关系即可得到符合条件的点的个数【题目详解】解:(1)由,得,化简,即,所以,当时,有最大值,此时点到距离最大为,因为,所以面积的最大值为(2)存在,由,得,化简得,即.故点C在以为圆心,半径为2的圆上,结合(1)中知,点C还在以为圆心,半径为的圆上,由于,,,且,所以圆M、圆N相交,有2个公共点,故存在2个点C符合要求.【题目点拨】本题考查两点间距离公式的应用,考查圆与圆的位置关系的应用,考查运算能力20、(Ⅰ);(Ⅱ).【解题分析】(Ⅰ)利用向量的数量积结合两角和与差的三角函数化简函数为一个角的一个三角函数的形式,利用正弦函数的单调增区间,求得时函数f(x)的单调递增区间;(Ⅱ)若锐角α满足,可得cos的值,然后求的值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论