2024届江苏省南通市如东中学高一数学第一学期期末综合测试试题含解析_第1页
2024届江苏省南通市如东中学高一数学第一学期期末综合测试试题含解析_第2页
2024届江苏省南通市如东中学高一数学第一学期期末综合测试试题含解析_第3页
2024届江苏省南通市如东中学高一数学第一学期期末综合测试试题含解析_第4页
2024届江苏省南通市如东中学高一数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南通市如东中学高一数学第一学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“四边形是菱形”是“四边形是平行四边形”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.如图,边长为的正方形是一个水平放置的平面图形的直观图,则图形的面积是A. B.C. D.3.下列函数中,既是偶函数又在区间上单调递减的是A. B.C. D.4.正割及余割这两个概念是由伊朗数学家阿布尔威发首先引入的.定义正割,余割.已知为正实数,且对任意的实数均成立,则的最小值为()A. B.C. D.5.如图正方体,棱长为1,为中点,为线段上的动点,过的平面截该正方体所得的截面记为,则下列命题正确的是当时,为四边形;当时,为等腰梯形;当时,与交点R满足;当时,为六边形;当时,的面积为A. B.C. D.6.如图,在中,已知为上一点,且满足,则实数的值为A. B.C. D.7.若直线与圆相交于两点,且,则A2 B.C.1 D.8.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:),可得这个几何体的体积(单位:cm3)是A.4 B.5C.6 D.79.下列函数中,在其定义域内既是增函数又是奇函数的是()A. B.C. D.10.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数概率是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一个几何体的三视图如图所示,则该几何体的体积为__________.12.函数的单调减区间是_________.13.若f(x)为偶函数,且当x≤0时,,则不等式>的解集______.14.某医药研究所研发一种新药,如果成年人按规定的剂量服用,服药后每毫升血液中的含药量y(微克)与时间t(时)之间近似满足如图所示的关系.若每毫升血液中含药量不低于0.5微克时,治疗疾病有效,则服药一次治疗疾病的有效时间为___________小时.15.写出一个最小正周期为2的奇函数________16.已知函数,给出下列四个命题:①函数是周期函数;②函数的图象关于点成中心对称;③函数的图象关于直线成轴对称;④函数在区间上单调递增.其中,所有正确命题的序号是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)若在上单调递增,求实数a的取值范围;(2)求关于的不等式的解集.18.已知函数的图象与的图象关于轴对称,且的图象过点.(1)若成立,求的取值范围;(2)若对于任意,不等式恒成立,求实数的取值范围.19.已知.(1)若,且,求的值.(2)若,且,求的值.20.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且,点P沿单位圆按逆时针方向旋转角后到达点.(1)求阴影部分的面积;(2)当时,求的值.21.已知点,圆.(1)求过点且与圆相切的直线方程;(2)若直线与圆相交于,两点,且弦的长为,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由菱形和平行四边形的定义可判断.【题目详解】解:四边形是菱形则四边形是平行四边形,反之,若四边形是平行四边形则四边形不一定是菱形,所以“四边形是菱形”是“四边形是平行四边形”充分不必要条件.故选:A.2、D【解题分析】根据直观图画出原图可得答案.【题目详解】由直观图画出原图,如图,因为,所以,,则图形的面积是.故选:D3、C【解题分析】因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C考点:1、函数的单调性与奇偶性;2、指数函数与对数函数;3函数的图象4、D【解题分析】由参变量分离法可得出,利用基本不等式可求得取值范围,即可得解.【题目详解】由已知可得,可得,因为,则,因为,当且仅当时,等号成立,故.故选:D.5、D【解题分析】由已知根据的不同取值,分别作出不同情况下的截面图形,利用数形结合思想能求出结果【题目详解】当时,如图,是四边形,故正确当时,如图,为等腰梯形,正确;当时,如图,由三角形与三角形相似可得,由三角形与三角形相似可得,,正确当时,如图是五边形,不正确;当时,如图是菱形,面积为,正确,正确的命题为,故选D【题目点拨】本题主要考查正方体的截面,意在考查空间想象能力,解题时要认真审题,注意数形结合思想的合理运用,是中档题6、B【解题分析】所以,所以。故选B。7、C【解题分析】圆心到直线的距离为,所以,选C.8、A【解题分析】如图三视图复原的几何体是底面为直角梯形,是直角梯形,,一条侧棱垂直直角梯形的直角顶点的四棱锥,即平面所以几何体的体积为:故选A【题目点拨】本题考查几何体的三视图,几何体的表面积的求法,准确判断几何体的形状是解题的关键9、D【解题分析】在定义域每个区间上为减函数,排除.是非奇非偶函数,排除.故选.10、A【解题分析】从1,2,3,4这4个数中,不放回地任意取两个数,共有(12),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种其中满足条件两个数都是奇数的有(1,3),(3,1)两种情况故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率.故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】该几何体是一个半圆柱,如图,其体积为.考点:几何体的体积.12、##【解题分析】根据复合函数的单调性“同增异减”,即可求解.【题目详解】令,根据复合函数单调性可知,内层函数在上单调递减,在上单调递增,外层函数在定义域上单调递增,所以函数#在上单调递减,在上单调递增.故答案为:.13、【解题分析】由已知条件分析在上的单调性,利用函数的奇偶性可得,再根据函数的单调性解不等式即可.【题目详解】f(x)为偶函数,且当x≤0时,单调递增,当时,函数单调递减,若>,f(x)为偶函数,,,同时平方并化简得,解得或,即不等式>的解集为.故答案为:【题目点拨】本题考查函数的奇偶性与单调性的综合应用,属于中档题.14、【解题分析】根据图象求出函数的解析式,然后由已知构造不等式,解不等式即可得解.【题目详解】当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有或,解得,所以,所以服药一次治疗疾病有效时间为个小时,故答案为:15、【解题分析】根据奇函数性质可考虑正弦型函数,,再利用周期计算,选择一个作答即可.【题目详解】由最小正周期为2,可考虑三角函数中的正弦型函数,,满足,即是奇函数;根据最小正周期,可得.故函数可以是中任一个,可取.故答案为:.16、①②③【解题分析】利用诱导公式化简函数,借助周期函数的定义判断①;利用函数图象对称的意义判断②③;取特值判断④作答.【题目详解】依题意,,因,是周期函数,是它的一个周期,①正确;因,,即,因此的图象关于点成对称中心,②正确;因,,即,因此的图象关于直线成轴对称,③正确;因,,,显然有,而,因此函数在区间上不单调递增,④不正确,所以,所有正确命题的序号是①②③.故答案为:①②③【题目点拨】结论点睛:函数的定义域为D,,(1)存在常数a,b使得,则函数图象关于点对称.(2)存在常数a使得,则函数图象关于直线对称.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析.【解题分析】(1)根据二次函数图象的性质确定参数a的取值区间;(2)确定方程的根或,讨论两根的大小关系得出不等式的解集.【题目详解】(1)因为函数的图象为开口向上的抛物线,其对称轴为直线由二次函数图象可知,的单调增区间为因为在上单调递增,所以所以,所以实数的取值区间是;(2)由得:方程的根为或①当时,,不等式的解集是②当时,,不等式的解集是③当时,,不等式的解集是综上,①当时,不等式的解集是②当时,不等式的解集是③当时,不等式的解集是18、(1);(2).【解题分析】利用已知条件得到的值,进而得到的解析式,再利用函数的图象关于轴对称,可得的解析式;(1)先利用对数函数的单调性,列出不等式组求解即可;(2)对于任意恒成立等价于,令,,利用二次函数求解即可.【题目详解】,,,;由已知得,即.(1)在上单调递减,,解得,的取值范围为.(2),对于任意恒成立等价于,,,令,,则,,当,即,即时,.【题目点拨】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则的值域是值域的子集19、(1)或;(2).【解题分析】(1)利用诱导公式结合化简,再解方程结合即可求解;(2)结合(1)中将已知条件化简可得,再由同角三角函数基本关系即可求解.【小问1详解】.所以,因为,则,或.【小问2详解】由(1)知:,所以,即,所以,所以,即,可得或.因为,则,所以.所以,故.20、(1)(2)【解题分析】(1)由三角函数定义求出点坐标,用扇形面积减三角形面积可得弓形面积;(2)由三角函数定义写出点坐标,计算后用二倍角公式和诱导公式计算【题目详解】(1)由三角函数定义可知,点P的坐标为.所以面积为,扇形OPA的面积为.所以阴影部分的面积为.(2)由三角函数的定义,可得.当时,,即,所以.【题目点拨】本题考查三角函数的定义,正弦的二倍角公式和诱导公式,属于基础题.21、(1)或;(2).【解题分析】(1)考虑切线的斜率是否存在,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论