2024届安徽省皖江名校联盟高一数学第一学期期末教学质量检测试题含解析_第1页
2024届安徽省皖江名校联盟高一数学第一学期期末教学质量检测试题含解析_第2页
2024届安徽省皖江名校联盟高一数学第一学期期末教学质量检测试题含解析_第3页
2024届安徽省皖江名校联盟高一数学第一学期期末教学质量检测试题含解析_第4页
2024届安徽省皖江名校联盟高一数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省皖江名校联盟高一数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,,则()A. B.C. D.2.函数的零点所在区间为:()A. B.C. D.3.幂函数的图象过点,则函数的值域是()A. B.C. D.4.已知,那么()A. B.C. D.5.已知,,,则下列判断正确的是()A. B.C. D.6.函数的零点所在区间是()A. B.C. D.7.已知函数的图象如图所示,则函数的图象为A.B.C.D.8.函数,则A. B.4C. D.89.已知集合,则A. B.C. D.10.已知,且α是第四象限角,那么的值是()A. B.-C.± D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为,则实数a的取值范围是______12.函数在上为单调递增函数,则实数的取值范围是______13.设函数=,则=14.经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是__________15.点分别为圆与圆上的动点,点在直线上运动,则的最小值为__________16.设为三个随机事件,若与互斥,与对立,且,,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求的值;(2)若是第三象限的角,化简三角式,并求值.18.北京冬奥会计划于2022年2月4日开幕,随着冬奥会的临近,中国冰雪运动也快速发展,民众参与冰雪运动的热情不断高涨盛会的举行,不仅带动冰雪活动,更推动冰雪产业快速发展某冰雪产业器材厂商,生产某种产品的年固定成本为200万元,每生产千件,需另投入成本为(万元),其中与之间的关系为:通过市场分析,当每千件件产品售价为40万元时,该厂年内生产的商品能全部销售完若将产品单价定为400元(1)写出年利润(万元)关于年产量(千件)的函数解析式(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?19.设两个向量,,满足,.(1)若,求、的夹角;(2)若、夹角为,向量与夹角为钝角,求实数的取值范围.20.如图,在平面直角坐标系中,锐角和钝角的顶点与原点重合,始边与轴的非负半轴重合,终边分别与单位圆交于,两点,且.(1)求的值;(2)若点的横坐标为,求的值.21.对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据补集的定义可得结果.【题目详解】因为全集,,所以根据补集的定义得,故选C.【题目点拨】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解2、C【解题分析】利用函数的单调性及零点存在定理即得.【题目详解】因为,所以函数单调递减,,∴函数的零点所在区间为.故选:C.3、C【解题分析】设,带点计算可得,得到,令转化为二次函数的值域求解即可.【题目详解】设,代入点得,则,令,函数的值域是.故选:C.4、C【解题分析】运用诱导公式即可化简求值得解【题目详解】,可得,那么故选:C5、C【解题分析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【题目详解】,即.故选:C.6、B【解题分析】判断函数的单调性,根据函数零点存在性定理即可判断.【题目详解】函数的定义域为,且函数在上单调递减;在上单调递减,所以函数为定义在上的连续减函数,又当时,,当时,,两函数值异号,所以函数的零点所在区间是,故选:B.7、A【解题分析】根据函数的图象,可得a,b的范围,结合指数函数的性质,即可得函数的图象.【题目详解】解:通过函数的图象可知:,当时,可得,即.函数是递增函数;排除C,D.当时,可得,,,故选A【题目点拨】本题考查了指数函数的图象和性质,属于基础题.8、D【解题分析】因为函数,所以,,故选D.【思路点睛】本题主要考查分段函数的解析式、指数与对数的运算,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.本题解答分两个层次:首先求出的值,进而得到的值.9、C【解题分析】分别解集合A、B中的不等式,再求两个集合的交集【题目详解】集合,集合,所以,选择C【题目点拨】进行集合的交、并、补运算前,要搞清楚每个集合里面的元素种类,以及具体的元素,再进行运算10、B【解题分析】由诱导公式对已知式子和所求式子进行化简即可求解.【题目详解】根据诱导公式:,所以,,故.故选:B【题目点拨】诱导公式的记忆方法:奇变偶不变,符号看象限.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】分,,三类,根据一次函数和二次函数的性质可解.【题目详解】当时,,易知此时函数的值域为;当时,二次函数图象开口向下,显然不满足题意;当时,∵函数的值域为,∴,解得或,综上,实数a的取值范围是,故答案为:.12、【解题分析】令∴即函数的增区间为,又函数在上为单调递增函数∴令得:,即,得到:,又∴实数的取值范围是故答案为13、【解题分析】由题意得,∴答案:14、或【解题分析】设所求直线方程为,将点代入上式可得或.考点:直线的方程15、7【解题分析】根据题意,算出圆M关于直线对称的圆方程为.当点P位于线段上时,线段AB的长就是的最小值,由此结合对称的知识与两点间的距离公式加以计算,即可得出的最小值.【题目详解】设圆是圆关于直线对称的圆,

可得,圆方程为,

可得当点C位于线段上时,线段AB长是圆N与圆上两个动点之间的距离最小值,

此时的最小值为AB,

,圆的半径,

,

可得因此的最小值为7,

故答案为7.点睛:圆中的最值问题往往转化动点与圆心的距离问题,本题中可以转化为,再利用对称性求出的最小值即可16、【解题分析】由与对立可求出,再由与互斥,可得求解.【题目详解】与对立,,与互斥,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)利用商数关系及题设变形整理即得的值;(2)注意既是一个无理式,又是一个分式,那么化简时既要考虑通分,又要考虑化为有理式.考虑通分,显然将两个式子的分母的积作为公分母,这样一来,被开方式又是完全平方式,即可以开方去掉根号,从将该三角式化简.试题解析:(1)∵∴2分解之得4分(2)∵是第三象限的角∴=6分===10分由第(1)问可知:原式==12分考点:三角函数同角关系式.18、(1)(2)72【解题分析】(1)由题意可得,当且时,,当且时,,从而可求得结果,(2)根据已知条件,结合二次函数的性质,以及基本不等式即可求得答案【小问1详解】由题意得,当且时,,当且时,,所以小问2详解】当当且时,,所以当时,,当且时,,当且仅当,即时取等号,综上,该厂年产量为72千件时,该厂在这一商品的生产中所获利润最大19、(1);(2)且.【解题分析】(1)根据数量积运算以及结果,结合模长,即可求得,再根据数量积求得夹角;(2)根据夹角为钝角则数量积为负数,求得的范围;再排除向量与不为反向向量对应参数的范围,则问题得解.【题目详解】(1)因,所以,即,又,,所以,所以,又,所以向量、的夹角是.(2)因为向量与的夹角为钝角,所以,且向量与不反向共线,即,又、夹角为,所以,所以,解得,又向量与不反向共线,所以,解得,所以的取值范围是且.【题目点拨】本题考查利用数量积求向量夹角,以及由夹角范围求参数范围,属综合基础题.20、(1);(2).【解题分析】(1)根据给定条件可得,再利用诱导公式化简计算作答.(2)由给定条件求出,再利用和角公式、倍角公式计算作答.【小问1详解】依题意,,所以.【小问2详解】因点的横坐标为,而点在第一象限,则点,即有,于是得,,,,所以.21、(1)46(2)n的最大值为14【解题分析】(1)对于集合P7,有n=7.当k=4时,Pn={|m∈In,k∈In}中有3个数(1,2,3)与In={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数为7×7﹣3=46(2)先证当n≥15时,Pn不能分成两个不相交的稀疏集的并集.否则,设A和B为两个不相交的稀疏集,使A∪B=Pn⊇In不妨设1∈A,则由于1+3=22,∴3∉A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,这与A为稀疏集相矛盾再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1和B1都稀疏集,且A1∪B1=I14当k=4时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,…,},可以分为下列3个稀疏集

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论