内蒙古呼和浩特市重点名校2024届高一数学第一学期期末检测试题含解析_第1页
内蒙古呼和浩特市重点名校2024届高一数学第一学期期末检测试题含解析_第2页
内蒙古呼和浩特市重点名校2024届高一数学第一学期期末检测试题含解析_第3页
内蒙古呼和浩特市重点名校2024届高一数学第一学期期末检测试题含解析_第4页
内蒙古呼和浩特市重点名校2024届高一数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古呼和浩特市重点名校2024届高一数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知水平放置的四边形按斜二测画法得到如图所示的直观图,其中,,,,则原四边形的面积为()A. B.C. D.2.过点与且圆心在直线上的圆的方程为A. B.C. D.3.已知函数,若函数有四个零点,则的取值范围是A. B.C. D.4.将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A. B.C. D.5.已知角的终边经过点,则的值为A. B.C. D.6.已知平面直角坐标系中,的顶点坐标分别为、、,为所在平面内的一点,且满足,则点的坐标为()A. B.C. D.7.已知直三棱柱中,,,,则异面直线与所成角的余弦值为A. B.C. D.8.对任意正实数,不等式恒成立,则实数的取值范围是()A. B.C. D.9.()A. B.1C.0 D.﹣110.如图,在棱长为1的正方体中,三棱锥的体积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_____________.12.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从__________年开始,快递业产生的包装垃圾超过4000万吨.(参考数据:,)13.已知函数fx=log5x.若f14.某高校甲、乙、丙、丁4个专业分别有150,150,400,300名学生.为了了解学生的就业倾向,用分层随机抽样的方法从这4个专业的学生中抽取40名学生进行调查,应在丁专业中抽取的学生人数为______15.在中,已知,则______.16.已知函数在区间,上恒有则实数的取值范围是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的最小值和最大值.18.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若的最大值与最小值之和为5,求的值.19.已知函数(1)若为偶函数,求;(2)若命题“,”为假命题,求实数的取值范围20.已知函数(1)求的单调增区间;(2)当时,求函数最大值和最小值.21.已知,向量,.(1)当实数x为何值时,与垂直.(2)若,求在上的投影.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据直观图画出原图,可得原图形为直角梯形,计算该直角梯形的面积即可.【题目详解】过点作,垂足为则由已知可得四边形为矩形,为等腰直角三角形,根据直观图画出原图如下:可得原图形为直角梯形,,且,可得原四边形的面积为故选:B.2、B【解题分析】先求得线段AB的中垂线的方程,再根据圆心又在直线上求得圆心,圆心到点A的距离为半径,可得圆的方程.【题目详解】因为过点与,所以线段AB的中点坐标为,,所以线段AB的中垂线的斜率为,所以线段AB的中垂线的方程为,又因为圆心在直线上,所以,解得,所以圆心为,所以圆的方程为.故选:B【题目点拨】本题主要考查圆的方程的求法,还考查了运算求解的能力,属于中档题.3、B【解题分析】不妨设,的图像如图所示,则,,其中,故,也就是,则,因,故.故选:B.【题目点拨】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系.4、A【解题分析】由题意结合辅助角公式可得,进而可得g(x)=2sin,由三角函数的性质可得,化简即可得解.【题目详解】设f(x)=cosx+sinx=2sin,向左平移m个单位长度得g(x)=2sin,∵g(x)的图象关于y轴对称,∴,∴m=,由m>0可得m的最小值为.故选:A.【题目点拨】本题考查了辅助角公式及三角函数图象与性质的应用,考查了运算求解能力,属于基础题.5、C【解题分析】因为点在单位圆上,又在角的终边上,所以;则;故选C.6、A【解题分析】设点的坐标为,根据向量的坐标运算得出关于、的方程组,解出这两个未知数,可得出点的坐标.【题目详解】设点的坐标为,,,,,即,解得,因此,点的坐标为.故选:A.【题目点拨】本题考查向量的坐标运算,考查计算能力,属于基础题.7、C【解题分析】如图所示,补成直四棱柱,则所求角为,易得,因此,故选C平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围8、C【解题分析】先根据不等式恒成立等价于,再根据基本不等式求出,即可求解.【题目详解】解:,即,即又当且仅当“”,即“”时等号成立,即,故.故选:C.9、C【解题分析】直接利用诱导公式以及特殊角的三角函数求解即可.【题目详解】.故选:C.10、A【解题分析】用正方体的体积减去四个三棱锥的体积【题目详解】由,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围.【题目详解】因为已知是定义在R上的偶函数,所以由,又因为上单调递减,所以有.当时,;当时,.故答案为:【题目点拨】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力.12、2021【解题分析】设快递行业产生的包装垃圾为y万吨,n表示从2015年开始增加的年份的数量,由题意可得y=400×(1+50%)n=400×(两边取对数可得n(lg3-lg2)=1,∴n(0.4771-0.3010)=1,解得0.176n=1,解得n≈6,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为202113、1,2【解题分析】结合函数的定义域求出x的范围,分x=1,0<x<1以及1<x<2三种情况进行讨论即可.【题目详解】因为fx=log5x的定义域为0,+当x=1时,fx当0<x<1时,2-x>1,则fx<f2-x等价于log5x<log52-x,所以-当1<x<2时,0<2-x<1,则fx<f2-x等价于log5x<log52-x,所以log5x<-log5所以x的取值范围是1,2.故答案为:1,2.14、12【解题分析】利用分层抽样的性质直接求解详解】由题意应从丁专业抽取的学生人数为:故答案为:1215、11【解题分析】由.16、【解题分析】根据对数函数的图象和性质可得,函数f(x)=loga(2x﹣a)在区间[]上恒有f(x)>0,即,或,分别解不等式组,可得答案【题目详解】若函数f(x)=loga(2x﹣a)在区间[]上恒有f(x)>0,则,或当时,解得<a<1,当时,不等式无解.综上实数的取值范围是(,1)故答案为(,1).【题目点拨】本题考查的知识点是复合函数的单调性,及不等式的解法,其中根据对数函数的图象和性质构造不等式组是解答的关键,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为,最小值为..【解题分析】(1)根据最小正周期的计算公式求解出的最小正周期;(2)先求解出的取值范围,然后根据正弦函数的单调性求解出在区间上的最值.【题目详解】(1)因为,所以;(2)因为,所以,当时,,此时,当时,,此时,故在区间上的最大值为,最小值为.18、(1)增区间是[kπ-,kπ+],k∈Z(2)【解题分析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定出的函数解析式,根据的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大值,即可得到的值解析:已知由,则T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ则-+kπ≤x≤+kπ故f(x)的增区间是[kπ-,kπ+],k∈Z(2)当x∈[0,]时,≤2x+≤∴sin(2x+)∈[-,1]∴∴点睛:这是一道求三角函数递增区间以及利用函数在某区间的最大值求得参数的题目,主要考查了两角和的正弦函数公式,正弦函数的单调性,以及正弦函数的定义域和值域,解题的关键是熟练掌握正弦函数的性质,属于中档题19、(1)(2)【解题分析】(1)根据偶函数的定义直接求解即可;(2)由题知命题“,”为真命题,进而得对,且恒成立,再分离参数求解即可得的取值范围是【小问1详解】解:因为函数为偶函数,所以,即,所以,即,所以.【小问2详解】解:因为命题“,”为假命题,所以命题“,”为真命题,所以,对,且恒成立,所以,对,且恒成立,由对勾函数性质知,函数在上单调递增,所以,且,即实数的取值范围是.20、(1)单调递增区间为;(2),.【解题分析】(1)利用和差公式和倍角公式把化为,然后可解出答案;(2)求出的范围,然后由正弦函数的知识可得答案.【题目

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论