版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昭通市盐津县一中2024届高一数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.2.已知幂函数的图像过点,若,则实数的值为A. B.C. D.3.已知角的终边经过点,则A. B.C.-2 D.4.设集合,函数,若,且,则的取值范围是()A. B.(,)C. D.(,1]5.下列命题中正确的个数是()①两条直线,没有公共点,那么,是异面直线②若直线上有无数个点不在平面内,则③空间中如果两个角的两边分别对应平行,那么这两个角相等或互补④若直线与平面平行,则直线与平面内的任意一条直线都没有公共点A. B.C. D.6.下列函数在其定义域上既是奇函数又是减函数的是()A. B.C. D.7.用二分法求方程的近似解,求得的部分函数值数据如下表所示:121.51.6251.751.8751.8125-63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程的近似解可取为A. B.C. D.8.函数的部分图象如图,则()A. B.C. D.9.已知,则等于()A. B.C. D.10.已知集合,,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,则______.12.已知幂函数的图象过点(2,),则___________13.已知函数,那么_________.14.幂函数的图象经过点,则________15.函数的定义域是__________,值域是__________.16.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为__________.(答案用,表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,(1)若,求,;(2)若,求实数的取值范围18.计算下列各式的值:(1);(2).19.已知函数的图象(部分)如图所示,(1)求函数的解析式和对称中心坐标;(2)求函数的单调递增区间20.已知函数是二次函数,,(1)求的解析式;(2)解不等式21.(1)已知,求的最小值;(2)求函数的定义域
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【题目详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【题目点拨】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题2、D【解题分析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【题目点拨】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.3、B【解题分析】按三角函数的定义,有.4、B【解题分析】按照分段函数先求出,由和解出的取值范围即可.【题目详解】,则,∵,解得,又故选:B.5、C【解题分析】①由两直线的位置关系判断;②由直线与平面的位置关系判断;③由空间角定理判断;④由直线与平面平行的定义判断.【题目详解】①两条直线,没有公共点,那么,平行或异面直线,故错误;②若直线上有无数个点不在平面内,则或相交,故错误;③由空间角定理知,正确;④由直线与平面平行的定义知,正确;故选:C6、D【解题分析】对于A:由定义法判断出不是奇函数,即可判断;对于B:判断出在R上为增函数,即可判断;对于C:不能说在定义域是减函数,即可判断;对于D:用图像法判断.【题目详解】对于A:的定义域为R..所以不是奇函数,故A错误;对于B:在R上为增函数.故B错误;对于C:在为减函数,在为减函数,但不能说在定义域是减函数.故C错误;对于D:,作出图像如图所示:所以既是奇函数又是减函数.故D正确.故选:D7、C【解题分析】利用零点存在定理和精确度可判断出方程的近似解.【题目详解】根据表中数据可知,,由精确度为可知,,故方程的一个近似解为,选C.【题目点拨】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.8、C【解题分析】先利用图象中的1和3,求得函数的周期,求得,最后根据时取最大值1,求得,即可得解【题目详解】解:根据函数的图象可得:函数的周期为,∴,当时取最大值1,即,又,所以,故选:C【题目点拨】本题主要考查了由的部分图象确定其解析式,考查了五点作图的应用和图象观察能力,属于基本知识的考查.属于基础题.9、A【解题分析】利用换元法设,则,然后利用三角函数的诱导公式进行化简求解即可【题目详解】设,则,则,则,故选:10、C【解题分析】解一元二次不等式求出集合,解不等式求出集合,再进行交集运算即可求解.【题目详解】因为,,所以,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】根据指数式与对数式的互化,得到,,再结合对数的运算法则,即可求解.【题目详解】由,可得,,所以.故答案为:.12、【解题分析】由幂函数所过的点求的解析式,进而求即可.【题目详解】由题设,若,则,可得,∴,故.故答案为:13、3【解题分析】首先根据分段函数求的值,再求的值.【题目详解】,所以.故答案为:314、【解题分析】设幂函数的解析式,然后代入求解析式,计算.【题目详解】设,则,解得,所以,得故答案为:15、①.②.【解题分析】解不等式可得出原函数的定义域,利用二次函数的基本性质可得出原函数的值域.详解】对于函数,有,即,解得,且.因此,函数的定义域为,值域为.故答案为:;.16、【解题分析】由题意得的三边分别为则由可得,所以,三角数三边分别为,因为,所以三个半径为的扇形面积之和为,由几何体概型概率计算公式可知,故答案为.【方法点睛】本题题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解题分析】(1)根据集合的基本运算即可求解(2)根据A∩B=B,得到B⊆A,再建立条件关系即可求实数a的取值范围【小问1详解】若a=2,A={x|0<x<2},∴={x|x≤0或x≥2},∵B={x|1<x<3},∴A∪B={x|0<x<3},∴={x|2≤x<3}【小问2详解】∵A∩B=B,∴B⊆A,∴a≥3∴实数a的取值范围为[3,+∞)18、(1)(2)【解题分析】(1)根据指数运算法则化简求值;(2)根据指数、对数的运算法则化简求值.【小问1详解】【小问2详解】19、(1),对称中心;(2),【解题分析】(1)由函数的图象得出A,求出函数的四分之一周期,从而得出ω,代入最高点坐标求出φ,得函数的解析式,进而求出对称中心坐标;(2)令,从而得到函数的单调递增区间.【题目详解】(1)由题意可知,,,,又当时,函数取得最大值2,所以,,又因为,所以,所以函数,令,,得对称中心,.(2)令,解得,,所以单调递增区间为,【题目点拨】求y=Asin(ωx+φ)的解析式,条件不管以何种方式给出,一般先求A,再求ω,最后求φ;求y=Asin(ωx+φ)的单调递增区间、对称轴方程、对称中心坐标时,要把ωx+φ看作整体,分别代入正弦函数的单调递增区间、对称轴方程、对称中心坐标分别求出x,这儿利用整体的思想;求y=Asin(ωx+φ)的最大值,需要借助正弦函数的最大值的求解方法即可20、(1)(2)【解题分析】(1)根据得对称轴为,再结合顶点可求解;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 卫生院院ct诊断合作协议书(2篇)
- 产品采购合同范本
- 离职协议保证
- 二零二四年度精密仪器设备维修与保养合同
- 软装货品选购合同格式
- 房屋买卖合同的权益保护
- 建筑工程钢结构部分施工质量验收资料
- 好运石材料采购协议
- 纸张购销合同范例
- 铜墙铁壁防盗门购销合同
- 住院精神疾病患者攻击行为预防-护理团标
- 《中国移动渠道》课件
- (完整版)彩钢瓦屋面施工方案
- (中职)ZZ029养老照护赛项规程(8月18日更新)
- 《指环王电影介绍》课件
- 民用爆炸物品安全技术基础培训试题
- 教科版小学科学三上3-1《我们关心天气》课件
- 犹太律法613条具体条款
- 提升内驱力-高中主题班会优质课件
- 北师大版六年级数学教材分析
- 供应商应急响应服务方案
评论
0/150
提交评论