版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南周口市高一上数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示韦恩图中,若A={1,2,3,4,5},B={3,4,5,6,7},则阴影部分表示的集合是()A.2,3,4,5,6, B.2,3,4,C.4,5,6, D.2,6,2.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是A. B.C. D.3.设函数则A.1 B.4C.5 D.94.下图是函数的部分图象,则()A. B.C. D.5.三条直线l1:ax+by-1=0,l2:2x+(a+2)y+1=0,l3:bx-2y+1=0,若l1,l2都和l3垂直,则a+b等于()A. B.6C.或6 D.0或46.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A. B.C. D.7.已知函数,若不等式对任意的均成立,则的取值不可能是()A. B.C. D.8.半径为1cm,圆心角为的扇形的弧长为()A. B.C. D.9.圆过点的切线方程是()A. B.C. D.10.已知函数的最大值与最小值的差为2,则()A.4 B.3C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11._____12.已知幂函数的图象经过点,且满足条件,则实数的取值范围是___13.若,则______.14.已知非零向量、满足,若,则、夹角的余弦值为_________.15.已知向量,,若,则的值为________.16.已知非零向量、满足,,在方向上的投影为,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前n项和为(1)求;(2)若,求数列的前项的和18.已知函数,对任意的,,都有,且当时,(1)求证:是上的增函数;(2)若,解不等式19.函数f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示(1)求A,ω,φ的值;(2)求图中a,b的值及函数f(x)的递增区间;(3)若α∈[0,π],且f(α)=,求α的值20.已知函数(R).(1)当取什么值时,函数取得最大值,并求其最大值;(2)若为锐角,且,求的值.21.设函数的定义域为集合的定义域为集合(1)当时,求;(2)若“”是“”的必要条件,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据图象确定阴影部分的集合元素特点,利用集合的交集和并集进行求解即可【题目详解】阴影部分对应的集合为{x|x∈A∪B且x∉A∩B},∵A∪B={1,2,3,4,5,6,7},A∩B={3,4,5},∴阴影部分的集合为{1,2,6,7},故选D【题目点拨】本题主要考查集合的运算,根据Venn图表示集合关系是解决本题的关键2、C【解题分析】将函数y=sin(x-)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(x-),再向左平移个单位得到的解析式为y=sin((x+)-)=y=sin(x-),故选C3、C【解题分析】根据题意,由函数的解析式求出与的值,相加即可得答案【题目详解】根据题意,函数,则,又由,则,则;故选C【题目点拨】本题考查对数的运算,及函数求值问题,其中解答中熟记对数的运算,以及合理利用分段函数的解析式求解是解答的关键,着重考查了推理与计算能力,属于基础题4、B【解题分析】由图象求出函数的周期,进而可得的值,然后逆用五点作图法求出的值即可求解.【题目详解】解:由图象可知,函数的周期,即,所以,不妨设时,由五点作图法,得,所以,所以故选:B.5、C【解题分析】根据相互垂直的两直线斜率之间的关系对b分类讨论即可得出【题目详解】l1,l2都和l3垂直,①若b=0,则a+2=0,解得a=﹣2,∴a+b=﹣2②若b≠0,则1,1,联立解得a=2,b=4,∴a+b=6综上可得:a+b的值为﹣2或6故选C【题目点拨】本题考查了相互垂直的直线斜率之间的关系、分类讨论方法,考查了推理能力与计算能力,属于基础题6、A【解题分析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【题目详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A7、D【解题分析】根据奇偶性定义和单调性的性质可得到的奇偶性和单调性,由此将恒成立的不等式化为,通过求解的最大值,可知,由此得到结果.【题目详解】,是定义在上的奇函数,又,为增函数,为减函数,为增函数.由得:,,整理得:,,,,的取值不可能是.故选:D.【题目点拨】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.8、D【解题分析】利用扇形弧长公式直接计算即可.【题目详解】圆心角化为弧度为,则弧长为.故选:D.9、D【解题分析】先求圆心与切点连线的斜率,再利用切线与连线垂直求得切线的斜率结合点斜式即可求方程.【题目详解】由题意知,圆:,圆心在圆上,,所以切线的斜率为,所以在点处的切线方程为,即.故选:D.10、C【解题分析】根据解析式可得其单调性,根据x的范围,可求得的最大值和最小值,根据题意,列出方程,即可求得a值.【题目详解】由题意得在上为单调递增函数,所以,,所以,解得,又,所以.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用三角函数公式化简,即可求出结果.【题目详解】,故答案为:.【题目点拨】本题主要考查运用三角函数公式化简求值,倍角公式的应用,考查运算求解能力.12、【解题分析】首先求得函数的解析式,然后求解实数的取值范围即可.【题目详解】设幂函数的解析式为,由题意可得:,即幂函数的解析式为:,则即:,据此有:,求解不等式组可得实数的取值范围是.【题目点拨】本题主要考查幂函数的定义及其应用,属于基础题.13、【解题分析】根据指对互化,指数幂的运算性质,以及指数函数的单调性即可解出【题目详解】由得,即,解得故答案为:14、【解题分析】本题首先可以根据得出,然后将其化简为,最后带入即可得出结果.【题目详解】令向量与向量之间的夹角为,因为,所以,即,,,,因为,所以,故答案为:.【题目点拨】本题考查向量垂直的相关性质,若两个向量垂直,则这两个向量的数量积为,考查计算能力,考查化归与转化思想,是简单题。15、【解题分析】因为,,,所以,解得,故答案为:16、【解题分析】利用向量数量积的几何意义得出,在等式两边平方可求出的值,然后利用平面向量数量积的运算律可计算出的值.【题目详解】,在方向上的投影为,,,则,可得,因此,.故答案:.【题目点拨】本题考查平面向量数量积计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)由条件求得数列是等差数列,由首项和公差求得.(2)由(1)求得通项,代入求得,分组求和求得.【题目详解】解:(1)因为,所以是公差为2,首项为2的等差数列所以(2)由(1)可知,因为,所以,所以18、(1)证明见解析(2)【解题分析】(1)赋值法证明抽象函数单调性;(2)先根据,用辅助法求出,再利用第一问求出的函数单调性解不等式.【小问1详解】由可得:,令,,且,则,因为当时,,所以,,即,由于的任意性,故可证明是上的增函数;【小问2详解】令得:,因为,所以,故,由第一问得到是上的增函数,所以,解得:,故不等式解集为.19、(1);(2),递增区间为;(3)或.【解题分析】(1)利用函数图像可直接得出周期T和A,再利用,求出,然后利用待定系数法直接得出的值(2)通过第一问求得的值可得到的函数解析式,令,再根据a的位置确定出a的值;令得到的函数值即为b的值;利用正弦函数单调增区间即可求出函数的单调增区间(3)令结合即可求得的取值【题目详解】解:(1)由图象知A=2,=-(-)=,得T=π,即=2,得ω=1,又f(-)=2sin[2×(-)+φ]=-2,得sin(-+φ)=-1,即-+φ=-+2kπ,即ω=+2kπ,k∈Z,∵|φ|<,∴当k=0时,φ=,即A=2,ω=1,φ=;(2)a=--=--=-,b=f(0)=2sin=2×=1,∵f(x)=2sin(2x+),∴由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,即函数f(x)的递增区间为[kπ-,kπ+],k∈Z;(3)∵f(α)=2sin(2α+)=,即sin(2α+)=,∵α∈[0,π],∴2α+∈[,],∴2α+=或,∴α=或α=【题目点拨】关于三角函数图像需记住:两对称轴之间的距离为半个周期;相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为个周期关于正弦函数单调区间要掌握:当时,函数单调递增;当时,函数单调递减20、(1)Z)时,函数f(x)取得最大值,其值为.(2).【解题分析】(1)由倍角公式,辅助角公式,化简f(x),利用三角函数的图像和性质即可得解.(2)把代入f(x)的解析式得f()的解析式,可求得,进而求得.【题目详解】(1)f(x)=2sinxcosx+cos2x=sin2x+cos2x,,∴当,即Z)时,函数f(x)取得最大值,其值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国地质器材行业投资前景及策略咨询研究报告
- 2024至2030年微机控制硬支承动平衡机项目投资价值分析报告
- 2024至2030年家居挂袋项目投资价值分析报告
- 2024至2030年哑光丝绸内墙乳胶漆项目投资价值分析报告
- 2024至2030年不锈钢雕刻工艺品项目投资价值分析报告
- 2024年中国陶瓷异鞍环填料市场调查研究报告
- 2024年防静电牛仔服项目可行性研究报告
- 2024年针线拉钩项目可行性研究报告
- 2024年豪华型电子根尖测定仪项目可行性研究报告
- 2024年中国营养壮骨粉市场调查研究报告
- 注射泵故障应急预案及处理流程
- 卫生院中药饮片处方点评点评细则和汇总表
- 《港口物流》课程教学大纲
- 浪河特大桥钢栈桥计算书(6m宽桥面)最新
- DFMEA全解(完整版)
- 搞笑小品剧本《家长驾到》台词完整版 金牌喜剧班李海银高海宝盛伟
- 《天然药物新药研究指导原则(征求意见稿)》
- 徕卡D LUX5中文使用说明书
- 教学管理系统业务流程图
- 150万吨直接还原铁项目可研报告
- 桃花源记剧本
评论
0/150
提交评论