2024届山东省各地数学高一上期末考试模拟试题含解析_第1页
2024届山东省各地数学高一上期末考试模拟试题含解析_第2页
2024届山东省各地数学高一上期末考试模拟试题含解析_第3页
2024届山东省各地数学高一上期末考试模拟试题含解析_第4页
2024届山东省各地数学高一上期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省各地数学高一上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列区间包含函数零点的为()A. B.C. D.2.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则()A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}3.由直线上的点向圆作切线,则切线长的最小值为()A.1 B.C. D.34.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()()A.10% B.30%C.60% D.90%5.已知在正四面体ABCD中,E是AD的中点,P是棱AC上的一动点,BP+PE的最小值为,则该四面体内切球的体积为()A.π B.πC.4π D.π6.方程的解所在的区间是A B.C. D.7.下列四组函数中,表示同一个函数的一组是()A.,B.,C.,D.,8.已知函数是奇函数,则A. B.C. D.9.如下图所示,在正方体中,下列结论正确的是A.直线与直线所成的角是 B.直线与平面所成的角是C.二面角的大小是 D.直线与平面所成的角是10.函数的部分图象大致是图中的()A.. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数的值域为,则的取值范围是__________12.意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的“悬链线问题”.双曲余弦函数,就是一种特殊的悬链线函数,其函数表达式为,相应的双曲正弦函数的表达式为.设函数,若实数m满足不等式,则m的取值范围为___________.13.在中,,,且在上,则线段的长为______14.某校高中三个年级共有学生2000人,其中高一年级有学生750人,高二年级有学生650人.为了了解学生参加整本书阅读活动的情况,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么在高三年级的学生中应抽取的人数为___________.15.关于的不等式的解集是________16.计算______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,三棱柱中,,,,为的中点,且.(1)求证:平面;(2)求与平面所成角的大小.18.某网站为调查某项业务的受众年龄,从订购该项业务的人群中随机选出200人,并将这200人的年龄按照,,,,分成5组,得到的频率分布直方图如图所示:(1)求的值和样本的平均数(同一组数据用该区间的中点值作代表);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求这2人中恰有1人年龄在中的概率19.如图,某市准备在道路的一侧修建一条运动比赛道,赛道的前一部分为曲线段,该曲线段是函数,时的图象,且图象的最高点为,赛道的中部分为长千米的直线跑道,且,赛道的后一部分是以为圆心的一段圆弧(1)求的值和的大小;(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,矩形的一边在道路上,一个顶点在半径上,另外一个顶点在圆弧上,且,求当“矩形草坪”的面积取最大值时的值20.已知集合.(1)若,求a的值;(2)若且“”是“”的必要不充分条件,求实数a的取值范围.21.已知函数为R上的奇函数,其中a为常数,e是自然对数的底数.(1)求函数的解析式;(2)求函数在上的最小值,并求取最小值时x的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据零点存在定理,分别判断选项区间的端点值的正负可得答案.【题目详解】,,,,,又为上单调递增连续函数故选:C.2、C【解题分析】由交集与补集的定义即可求解.【题目详解】解:因为集合A={0,1,2},B={-1,0,1},所以,又全集U={-1,0,1,2,3},所以,故选:C.3、B【解题分析】先求圆心到直线的距离,此时切线长最小,由勾股定理不难求解切线长的最小值【题目详解】切线长的最小值是当直线上的点与圆心距离最小时取得,圆心到直线的距离为,圆的半径为1,故切线长的最小值为,故选:B【题目点拨】本题考查圆的切线方程,点到直线的距离,是基础题4、B【解题分析】根据所给公式、及对数的运算法则代入计算可得;【题目详解】解:当时,,当时,,∴,∴约增加了30%.故选:B5、D【解题分析】首先设正四面体的棱长为,将侧面和沿边展开成平面图形,根据题意得到的最小值为,从而得到,根据等体积转化得到内切球半径,再计算其体积即可.【题目详解】设正四面体的棱长为,将侧面和沿边展开成平面图形,如图所示:则的最小值为,解得.如图所示:为正四面体的高,,正四面体高.所以正四面体的体积.设正四面体内切球的球心为,半径为,如图所示:则到正四面体四个面的距离相等,都等于,所以正四面体的体积,解得.所以内切球的体积.故选:D6、C【解题分析】设,则由指数函数与一次函数的性质可知,函数与的上都是递增函数,所以在上单调递增,故函数最多有一个零点,而,,根据零点存在定理可知,有一个零点,且该零点处在区间内,故选答案C.考点:函数与方程.7、B【解题分析】根据相等函数的判定方法,逐项判断,即可得出结果.【题目详解】A选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故A错;B选项,因为的定义域为,的定义域也为,且与对应关系一致,是同一函数,故B正确;C选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故C错;D选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故D错.故选:B.8、A【解题分析】由函数的奇偶性求出,进而求得答案【题目详解】因为是奇函数,所以,即,则,故.【题目点拨】本题考查函数的奇偶性,属于基础题9、D【解题分析】选项,连接,,因为,所以直线与直线所成的角为,故错;选项,因为平面,故为直线与平面所成的角,根据题意;选项,因为平面,所以,故二面角的平面角为,故错;用排除法,选故选:D10、D【解题分析】根据函数的奇偶性及函数值得符号即可得到结果.【题目详解】解:函数的定义域为R,即∴函数为奇函数,排除A,B,当时,,排除C,故选:D【题目点拨】函数识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题意得12、【解题分析】先判断为奇函数,且在R上为增函数,然后将转化为,从而有,进而可求出m的取值范围【题目详解】由题意可知,的定义域为R,因为,所以为奇函数.因为,且在R上为减函数,所以由复合函数的单调性可知在R上为增函数.又,所以,所以,解得.故答案为:.13、1【解题分析】∵,∴,∴,∵且在上,∴线段为的角平分线,∴,以A为原点,如图建立平面直角坐标系,则,D∴故答案为114、60【解题分析】求出高三年级的学生人数,再根据分层抽样的方法计算即可.【题目详解】高三年级有学生2000-750-650=600人,用分层抽样的方法从中抽取容量为200的样本,应抽取高三年级学生的人数为200×600故答案为:6015、【解题分析】不等式,可变形为:,所以.即,解得或.故答案为.16、11【解题分析】进行分数指数幂和对数式的运算即可【题目详解】原式故答案为11【题目点拨】本题考查对数式和分数指数幂的运算,熟记运算性质,准确计算是关键,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)连结与交于点,连结,由中位线定理可得,再根据线面平行的判定定理即可证明结果;(2)方法一:根据线面垂直的判定定理,可证明平面;取的中点,易证平面,所以即所求角,再根据直棱柱的有关性质求即可得到结果;方法二:根据线面垂直的判定定理,可证明平面;取的中点,易证平面;所以即与平面所成的角,再根据直棱柱的有关性质求即可得到结果.【小问1详解】证明:如图一,连结与交于点,连结.在中,、为中点,∴.又平面,平面,∴平面.图一【小问2详解】证明:(方法一)如图二,图二∵,为的中点,∴.又,,∴平面.取的中点,又为的中点,∴、、平行且相等,∴四边形是平行四边形,∴与平行且相等.又平面,∴平面,∴即所求角.由前面证明知平面,∴,又,,∴平面,∴此三棱柱为直棱柱.设∴,,,.(方法二)如图三,图三∵,为的中点,∴.又,,∴平面.取的中点,则,∴平面.∴即与平面所成的角.由前面证明知平面,∴,又,,∴平面,∴此三棱柱为直棱柱.设,∴,,∴.18、(1),平均数为岁(2)【解题分析】(1)根据频率之和等于得出的值,再由频率分布直方图中的数据计算平均数;(2)根据分层抽样确定第1,2组中抽取的人数,再由列举法结合古典概型的概率公式得出概率.【小问1详解】由,得平均数为岁.【小问2详解】第1,2组的人数分别为人,人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为,,,,从5人中随机抽取2人,样本空间可记为,,,,,,,,,,用表示“2人中恰有1人年龄在”,则,,,,,,包含的样本点个数是6.所以2人中恰有1人年龄在中的概率19、(1),;(2).【解题分析】(1)由题意可得,故,从而可得曲线段的解析式为,令x=0可得,根据,得,因此(2)结合题意可得当“矩形草坪”的面积最大时,点在弧上,由条件可得“矩形草坪”的面积为,然后根据的范围可得当时,取得最大值试题解析:(1)由条件得.∴.∴曲线段的解析式为.当时,.又,∴,∴.(2)由(1),可知.又易知当“矩形草坪”的面积最大时,点在弧上,故.设,,“矩形草坪”的面积为.∵,∴,故当,即时,取得最大值20、(1)(2)【解题分析】(1)先求出集合B,再由题意可得从而可求出a的值,(2)由题意可得,从而有再结合可求出实数a的取值范围.【小问1详解】由题设知,∵,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论