2024届湖北省宜宜昌市部分示范高中教学协作体高一上数学期末质量检测试题含解析_第1页
2024届湖北省宜宜昌市部分示范高中教学协作体高一上数学期末质量检测试题含解析_第2页
2024届湖北省宜宜昌市部分示范高中教学协作体高一上数学期末质量检测试题含解析_第3页
2024届湖北省宜宜昌市部分示范高中教学协作体高一上数学期末质量检测试题含解析_第4页
2024届湖北省宜宜昌市部分示范高中教学协作体高一上数学期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省宜宜昌市部分示范高中教学协作体高一上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集是()A. B.C. D.2.某四棱锥的三视图如图所示,该四棱锥的表面积是A.32B.16+C.48D.3.命题“”的否定是A. B.C. D.4.下列说法中,正确的是()A.锐角是第一象限的角 B.终边相同的角必相等C.小于的角一定为锐角 D.第二象限的角必大于第一象限的角5.已知函数,若图象过点,则的值为()A. B.2C. D.6.半径为2的扇形OAB中,已知弦AB的长为2,则的长为A. B.C. D.7.已知向量满足,且,若向量满足,则的取值范围是A. B.C D.8.在空间四边形ABCD中,AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是()A平面ABC⊥平面BED B.平面ABC⊥平面ABDC.平面ABC⊥平面ADC D.平面ABD⊥平面BDC9.已知函数,若存在不相等的实数a,b,c,d满足,则的取值范围为()A B.C. D.10.如图所示的程序框图中,输入,则输出的结果是A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于______12.已知点,若,则点的坐标为_________.13.函数是幂函数,且当时,是减函数,则实数=_______14.函数的定义域为______15.若扇形的周长是16,圆心角是2(rad),则扇形的面积是__________.16.已知函数的部分图象如图所示,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)从区间内任意选取一个实数,求事件“”发生的概率;(2)从区间内任意选取一个整数,求事件“”发生的概率.18.已知函数(1)求函数的定义域及的值;(2)判断函数的奇偶性;(3)判断在上的单调性,并给予证明19.已知函数(1)化简并求的值;(2)若是第三象限角,且,求20.已知定义域为的函数是奇函数.(1)求的值;(2)判断并证明函数的单调性;(3)若对任意的不等式恒成立,求实数的取值范围.21.已知的两顶点和垂心.(1)求直线AB的方程;(2)求顶点C的坐标;(3)求BC边的中垂线所在直线的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】利用一元二次不等式的解法即得.【题目详解】由可得,,故不等式的解集是.故选:B.2、B【解题分析】由题意知原几何体是正四棱锥,其中正四棱锥的高为2,底面是一个边长为4的正方形,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,所以四个侧面积是,底面面积为,所以该四棱锥的表面积是16+,故选B点评:本题考查由三视图求几何体的表面积,做此题型的关键是正确还原几何体及几何体的棱的长度.3、C【解题分析】全称命题的否定是存在性命题,所以,命题“”的否定是,选C.考点:全称命题与存在性命题.4、A【解题分析】根据锐角的定义,可判定A正确;利用反例可分别判定B、C、D错误,即可求解.【题目详解】对于A中,根据锐角的定义,可得锐角满足是第一象限角,所以A正确;对于B中,例如:与的终边相同,但,所以B不正确;对于C中,例如:满足,但不是锐角,所以C不正确;对于D中,例如:为第一象限角,为第二象限角,此时,所以D不正确.故选:A.5、B【解题分析】分析】将代入求得,进而可得的值.【题目详解】因为函数的图象过点,所以,则,所以,,故选:B.6、C【解题分析】由已知可求圆心角的大小,根据弧长公式即可计算得解【题目详解】设扇形的弧长为l,圆心角大小为,∵半径为2的扇形OAB中,弦AB的长为2,∴,∴故选C【题目点拨】本题主要考查了弧长公式的应用,考查了数形结合思想的应用,属于基础题7、B【解题分析】由题意利用两个向量加减法的几何意义,数形结合求得的取值范围.【题目详解】设,根据作出如下图形,则当时,则点的轨迹是以点为圆心,为半径的圆,且结合图形可得,当点与重合时,取得最大值;当点与重合时,取得最小值所以的取值范围是故当时,的取值范围是故选:B8、A【解题分析】利用面面垂直的判定定理逐一判断即可【题目详解】连接DE,BE.因为E为对角线AC的中点,且AB=BC,AD=CD,所以DE⊥AC,BE⊥AC因为DE∩BE=E,所以AC⊥面BDEAC⊂面ABC,所以平面ABC⊥平面BED,故选A【题目点拨】本题主要考查了面面垂直的判定,要求熟练掌握面面垂直的判定定理9、C【解题分析】将问题转化为与图象的四个交点横坐标之和的范围,应用数形结合思想,结合对数函数的性质求目标式的范围.【题目详解】由题设,将问题转化为与的图象有四个交点,,则在上递减且值域为;在上递增且值域为;在上递减且值域为,在上递增且值域为;的图象如下:所以时,与的图象有四个交点,不妨假设,由图及函数性质知:,易知:,,所以.故选:C10、B【解题分析】输入x=2后,该程序框图的执行过程是:输入x=2,x=2>1成立,y==2,输出y=2选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由直四棱柱的底面是边长为1的正方形,侧棱长可得由知就是异面直线与的夹角,且所以=60°,即异面直线与的夹角大小等于60°.考点:1正四棱柱;2异面直线所成角12、(0,3)【解题分析】设点的坐标,利用,求解即可【题目详解】解:点,,,设,,,,,解得,点的坐标为,故答案为:【题目点拨】本题考查向量的坐标运算,向量相等的应用,属于基础题13、-1【解题分析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【题目详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【题目点拨】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值14、【解题分析】由对数的真数大于零、二次根式的被开方数非负,分式的分母不为零,列不等式组可求得答案【题目详解】由题意得,解得,所以函数的定义域为,故答案为:15、16【解题分析】因为函数的周长为16,圆心角是2,设扇形的半径为,则,解得r=4,所以扇形的弧长为8,所以面积为,故答案为16.16、【解题分析】由图象可得最小正周期的值,进而可得,又函数图象过点,利用即可求解.【题目详解】解:由图可知,因为,所以,解得,因为函数的图象过点,所以,又,所以,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)由,得,即,故由几何概型概率公式,可得从区间内任意选取一个实数,求事件“”发生的概率;(2)由,得,整数有个,在区间的整数有个,由古典概型概率公式可知得,从区间内任意选取一个整数事件“”发生的概率.试题解析:(1)因为,所以,即,故由几何概型可知,所求概率为.(2)因为,所以,则在区间内满足的整数为1,2,3,共3个,故由古典概型可知,所求概率为.18、(1)(2)偶函数(3)在上是减函数,证明见解析.【解题分析】(1)根据对数函数成立的条件即可求函数f(x)的定义域及的值;(2)根据函数奇偶性的定义即可判断函数的奇偶性;(3)利用函数单调性的定义进行判断和证明.【题目详解】(1)因为,所以,解得,所以函数的定义域为.(2)由(1)知函数的定义域关于原点对称,且,所以函数是偶函数.(3)在上是减函数.设,且,则,因为,所以,所以,即,所以在上是减函数.【题目点拨】方法点睛:利用定义法证明函数的单调性,第一步设且,第二步做差,变形,判断差的符号,第三步根据差的符号作出结论.19、(1);.(2)【解题分析】(1)根据三角函数的诱导公式,准确运算,求得,进而求得的值;(2)由,得到,,进而求得.【小问1详解】解:由函数,所以.【小问2详解】解:因为是第三象限角,且,可得,所以,所以.20、(1),;(2)为定义在上的减函数,证明见解析;(3).【解题分析】(1)由可求得;根据奇函数定义知,由此构造方程求得;(2)将函数整理为,设,可证得,由此可得结论;(3)根据单调性和奇偶性可将不等式化为,结合的范围可求得,由此可得结果.【小问1详解】是定义在上的奇函数,且,,解得:,,,解得:;当,时,,,满足为奇函数;综上所述:,;【小问2详解】由(1)得:;设,则,,,,,是定义在上的减函数;【小问3详解】由得:,又为上的奇函数,,,由(2)知:是定义在上的减函数,,即,当时,,,即实数的取值范围为.21、(1);(2);(3).【解题分析】(1)由两点间的斜率公式求出,再代入其中一点,由点斜式求出直线的方程(也可直接代两点式求解);(2)由题可知,,借助斜率公式,进而可分别求出直线与直线的方程,再联立方程,即可求得点的坐标;(3)由中垂线性质知,边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论