版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二篇经典专题突破•核心素养提升专题五解析几何第2讲椭圆、双曲线、抛物线自主先热身真题定乾坤核心拔头筹考点巧突破高考对这部分知识考查侧重三个方面:一是求圆锥曲线的标准方程;二是求椭圆的离心率、双曲线的离心率、渐近线问题;三是抛物线的性质及应用问题.考情分析自主先热身真题定乾坤真题热身C
B
A
13
∴|AF1|=|F1F2|,∴直线DE为线段AF2的垂直平分线,连接EF2,DF2,则四边形ADF2E为轴对称图形,∴△ADE的周长=|DE|+|AE|+|AD|=|DE|+|EF2|+|DF2|=4a=8c=13.【解析】
方法一:因为P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,所以四边形PF1QF2为矩形,设|PF1|=m,|PF2|=n,8
由椭圆的定义可得|PF1|+|PF2|=m+n=2a=8,所以m2+2mn+n2=64,因为|PF1|2+|PF2|2=|F1F2|2=4c2=4(a2-b2)=48,即m2+n2=48,所以mn=8,所以四边形PF1QF2的面积为|PF1||PF2|=mn=8.4
B
B
C
B
【解析】
方法一:因为P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,所以四边形PF1QF2为矩形,设|PF1|=m,|PF2|=n,由椭圆的定义可得|PF1|+|PF2|=m+n=2a=8,所以m2+2mn+n2=64,8
7.(2021·全国新高考Ⅰ卷)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为____________.感悟高考圆锥曲线的定义、方程与性质是每年高考必考的内容.以选择、填空题的形式考查,常出现在第4~11或15~16题的位置,着重考查圆锥曲线的几何性质与标准方程,难度中等.核心拔头筹考点巧突破考点一椭圆、双曲线、抛物线的定义与标准方程核心提练1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.典例1D
B
【易错提醒】求圆锥曲线的标准方程时的常见错误双曲线的定义中忽略“绝对值”致错;椭圆与双曲线中参数的关系式弄混,椭圆中的关系式为a2=b2+c2,双曲线中的关系式为c2=a2+b2;圆锥曲线方程确定时还要注意焦点位置.对点演练C
2
(2)由双曲线的方程可得:双曲线的实半轴长a=m,设半焦距c,则c2=2m2+5,由双曲线的定义可得|AF1|-|AF2|=2|AF2|=2a,∴|AF2|=a=m,|AF1|=3m,考点二圆锥曲线的几何性质核心提练典例2B
B
【解析】由题意可知直线y=x-1过抛物线y2=4x的焦点(1,0),如图,AA′,BB′,MM′都和准线垂直,并且垂足分别是A′,B′,M′,对点演练D
B
考点三直线与圆锥曲线的位置关系核心提练解决直线与椭圆的位置关系问题,经常利用设而不求的方法,解题要点如下:(1)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2);(2)联立直线的方程与椭圆的方程;(3)消元得到关于x或y的一元二次方程;(4)利用根与系数的关系设而不求;(5)把题干中的条件转化为含有x1+x2,x1x2或y1+y2,y1y2的式子,进而求解即可.典例3【素养提升】解决直线与圆锥曲线位置关系的注意点(1)注意使用圆锥曲线的定义.(2)引入参数,注意构建直线与圆锥曲线的方程组.(3)注意用好圆锥曲线的几何性质.(4)注意几何关系和代数关系之间的转化.对点演练C
D
(2)假设A在第一象限,如图,过A,B分别向抛物线的准线作垂线,垂足分别为D,E,过A作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学游泳小学作文15篇
- 《打电话》教案汇编九篇
- 大学生实习报告(15篇)
- 2024年12月 《马克思主义基本原理概论》复习题
- 关于五年级单元作文300字10篇
- 2024年五年级语文上册 第一单元 语文园地一教学实录 新人教版
- 公司财务个人工作计划5篇
- 2019年资产负债表(样表)
- 转让协议书范文七篇
- 个人房屋租赁合同范文合集五篇
- 《病理科(中心)建设与配置标准》
- 医药销售主管市场规划
- 测量应急管理方案
- 克雅氏病的护理
- 2024-2025学年深圳市初三适应性考试模拟试卷语文试卷
- 2023年全国高中数学联赛北京赛区预赛试题
- 全国职业院校技能大赛培训课件
- 财务年度工作述职报告
- 投标书范本完整版本
- 防艾小课堂学习通超星期末考试答案章节答案2024年
- 第七单元《长方形和正方形 解决问题》(说课稿)-2024-2025学年三年级上册数学人教版
评论
0/150
提交评论