2024届福建省宁化城东中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第1页
2024届福建省宁化城东中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第2页
2024届福建省宁化城东中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第3页
2024届福建省宁化城东中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第4页
2024届福建省宁化城东中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省宁化城东中学数学九年级第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各数中,属于无理数的是()A. B. C. D.2.如图,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于点G,连接AF,给出下列结论:①AE⊥BF;②AE=BF;③BG=GE;④S四边形CEGF=S△ABG,其中正确的个数为()A.1个 B.2个 C.3个 D.4个3.如图,在平面直角坐标系中,直线OA过点(4,2),则的值是()A. B. C. D.24.中国在夏代就出现了相当于砝码的“权”,此后的多年间,不同朝代有不同形状和材质的“权”作为衡量的量具.下面是一个“”形增砣砝码,其俯视图如下图所示,则其主视图为()A. B. C. D.5.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8 B.﹣2 C.0 D.66.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A. B. C. D.7.如图:已知CD为⊙O的直径,过点D的弦DE∥OA,∠D=50°,则∠C的度数是()A.25° B.40° C.30° D.50°8.如图,,,是⊙上的三个点,如果∠°,那么∠的度数为()A. B. C. D.9.抛物线的对称轴为A. B. C. D.10.如图,在矩形ABCD中,DE⊥AC垂足为F,交BC于点E,BE=2EC,连接AE.则tan∠CAE的值为()A. B. C. D.11.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是抛物线上两点,则y1<y2A.①② B.②③ C.②④ D.①③④12.将抛物线y=向左平移2个单位后,得到的新抛物线的解析式是()A. B.y=C.y= D.y=二、填空题(每题4分,共24分)13.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为__cm.14.计算:sin30°=_____.15.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点为位似中心,将△ABC缩小,使变换得到的△DEF与△ABC对应边的比为1∶2,则线段AC的中点P变换后对应点的坐标为____.16.抛物线的开口方向是_____.17.抛物线与轴交点坐标为______.18.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为__________.三、解答题(共78分)19.(8分)某商场将进价为元的台灯以元售出,平均每月能售出个,调查表明:这种台灯的售价每上涨元,其销售量就减少个.为了实现平均每月元的销售利润,这种台灯的售价应定为多少?这时应进台灯个?如果商场要想每月的销售利润最多,这种台灯的售价又将定为多少?这时应进台灯多个?20.(8分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).21.(8分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E(1)求证:DE是⊙O的切线.(2)求DE的长.22.(10分)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=,AB=6,求⊙O的半径.23.(10分)如图将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,(1)求证:△AME∽△BEC.(2)若△EMC∽△AME,求AB与BC的数量关系.24.(10分)为了推动课堂教学改革,打造高效课堂,配合我市“两型课堂”的课题研究,莲城中学对八年级部分学生就一期来“分组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的八年级学生的人数,并补全条形统计图;(2)若该校八年级学生共有180人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生).25.(12分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量(个)与y销售单价x(元)有如下关系:,设这种双肩包每天的销售利润为w元.(1)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?26.近期江苏省各地均发布“雾霾”黄色预警,我市某口罩厂商生产一种新型口罩产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系满足下表.销售单价x(元/件)…20253040…每月销售量y(万件)…60504020…(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并直接写出y与x之间的函数关系式为__________;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?

参考答案一、选择题(每题4分,共48分)1、A【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行判断即可.【题目详解】A、是无理数,故本选项正确;

B、=2,是有理数,故本选项错误;

C、0,是有理数,故本选项错误;

D、1,是有理数,故本选项错误;

故选:A.【题目点拨】本题考查了无理数的定义,属于基础题,掌握无理数的三种形式是解答本题的关键.2、C【分析】根据正方形的性质证明△ABE≌△BCF,可证得①AE⊥BF;

②AE=BF正确;证明△BGE∽△ABE,可得==,故③不正确;由S△ABE=S△BFC可得S四边形CEGF=S△ABG,故④正确.【题目详解】解:在正方形ABCD中,AB=BC,∠ABE=∠C=90,

又∵BE=CF,

∴△ABE≌△BCF(SAS),

∴AE=BF,∠BAE=∠CBF,

∴∠FBC+∠BEG=∠BAE+∠BEG=90°,

∴∠BGE=90°,

∴AE⊥BF,故①,②正确;

∵CF=2FD,BE=CF,AB=CD,

∴=,

∵∠EBG+∠ABG=∠ABG+∠BAG=90°,

∴∠EBG=∠BAE,

∵∠EGB=∠ABE=90°,

∴△BGE∽△ABE,

∴==,即BG=GE,故③不正确,

∵△ABE≌△BCF,

∴S△ABE=S△BFC,

∴S△ABE−S△BEG=S△BFC−S△BEG,

∴S四边形CEGF=S△ABG,故④正确.

故选:C.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识点,解决问题的关键是熟练掌握正方形的性质.3、A【分析】根据题意作出合适的辅助线,然后根据锐角三角函数和图象中的数据即可解答本题.【题目详解】如图:过点(4,2)作直线CD⊥x轴交OA于点C,交x轴于点D,∵在平面直角坐标系中,直线OA过点(4,2),∴OD=4,CD=2,∴tanα===,故选A.【题目点拨】本题考查解直角三角形、坐标与图形的性质,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.4、A【分析】根据从正面看得到的图形是主视图,可得答案.【题目详解】从正面看中间的矩形的左右两边是虚的直线,故选:A.【题目点拨】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5、A【分析】将函数的解析式化成顶点式,再根据二次函数的图象与性质即可得.【题目详解】因此,二次函数的图象特点为:开口向上,当时,y随x的增大而减小;当时,y随x的增大而增大则当时,二次函数取得最小值,最小值为.故选:A.【题目点拨】本题考查了二次函数的图象与性质,熟记函数的图象特征与性质是解题关键.6、C【解题分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【题目详解】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1,交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1.∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=20°.∵∠OP1B=20°,∴OP1∥AC.∵AO=OB,∴P1C=P1B,∴OP1AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是2.故选C.【题目点拨】本题考查了切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.7、A【分析】根据DE∥OA证得∠AOD=50°即可得到答案.【题目详解】解:∵DE∥OA,∠D=50°,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°.故选:A.【题目点拨】此题考查平行线的性质,同弧所对的圆周角与圆心角的关系,利用平行线证得∠AOD=50°是解题的关键.8、C【分析】在弧AB上取一点D,连接AD,BD,利用圆周角定理可知,再利用圆内接四边形的性质即可求出∠的度数.【题目详解】如图,在弧AB上取一点D,连接AD,BD,则∴故选C【题目点拨】本题主要考查圆周角定理及圆内接四边形的性质,掌握圆周角定理及圆内接四边形的性质是解题的关键.9、B【分析】根据顶点式的坐标特点,直接写出对称轴即可.【题目详解】解∵:抛物线y=-x2+2是顶点式,

∴对称轴是直线x=0,即为y轴.

故选:B.【题目点拨】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.10、C【分析】证明△AFD∽△CFE,得出,由△CFE∽△DFC,得出,设EF=x,则DE=3x,再由三角函数定义即可得出答案.【题目详解】解:设EC=x,∵BE=2EC=2x,∴BC=BE+CE=3x,∵四边形ABCD是矩形,

∴AD=BC=3x,AD∥EC,

∴△AFD∽△CFE,

∴,,设CF=n,设EF=m,

∴DF=3EF=3m,AF=3CF=3n,∵△ECD是直角三角形,,

∴△CFE∽△DFC,

∴,∴,即,

∴,∵,∴tan∠CAE=,

故选:C.【题目点拨】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解题的关键.11、C【解题分析】试题分析:根据题意可得:a<0,b>0,c>0,则abc<0,则①错误;根据对称轴为x=1可得:-b2a=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y>0,即4a+2b+c>0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a>0,如果开口向下,则a<0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.12、A【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【题目详解】解:将抛物线y=向左平移2个单位后,得到的新抛物线的解析式是:.故答案为A.【题目点拨】本题考查了二次函数图像的平移法则,即掌握“左加右减,上加下减”是解答本题的关键.二、填空题(每题4分,共24分)13、3【分析】如图,连接OD、OE、OF,由切线的性质和切线长定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接着证明四边形OECF为正方形,则CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的长.【题目详解】解:如图,连接OE,OF,OD,∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四边形OECF为矩形而OF=OE,∴四边形OECF为正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案为:3【题目点拨】本题考查了三角形的内切圆与内心,切线的性质,切线长定理,勾股定理,正方形的判定和性质,熟悉切线长定理是本题的关键.14、1【解题分析】根据sin30°=12【题目详解】sin30°=12【题目点拨】本题考查的知识点是特殊角的三角函数值,解题的关键是熟练的掌握特殊角的三角函数值.15、(1,)或(-1,-)【分析】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.本题中k=1或−1.【题目详解】解:∵两个图形的位似比是1:(−)或1:,AC的中点是(4,3),∴对应点是(1,)或(−1,−).【题目点拨】本题主要考查位似变换中对应点的坐标的变化规律.16、向上【分析】根据二次项系数的符号即可确定答案.【题目详解】其二次项系数为2,且二次项系数:2>0,所以开口方向向上,故答案为:向上.【题目点拨】本题考查了二次函数的性质,熟知二次函数y=ax2+bx+c(a≠0)图象的开口方向与a的值有关是解题的关键.17、【分析】令x=0,求出y的值即可.【题目详解】解:∵当x=0,则y=-1+3=2,∴抛物线与y轴的交点坐标为(0,2).【题目点拨】本题考查的是二次函数的性质,熟知y轴上点的特点,即y轴上的点的横坐标为0是解答此题的关键.18、【分析】设一双为红色,另一双为绿色,画树状图得出总结果数和恰好两只手套凑成同一双的结果数,利用概率公式即可得答案.【题目详解】画树状图如下:∵共有6种可能情况,恰好两只手套凑成同一双的情况有2种,∴恰好两只手套凑成同一双的概率为,故答案为:【题目点拨】本题考查用列表法或树状图法求概率,熟练掌握概率公式是解题关键.三、解答题(共78分)19、(1)这种台灯的售价应定为元或元,这时应进台灯个或个;商场要想每月的销售利润最多,这种台灯的售价定为元,这时应进台灯个.【分析】(1)设这种台灯的售价应定为x元,根据题意得:利润为(x-30)[600-10(x-40)]=10000;(2)由(1)得:W=(x-30)[600-10(x-40)],进而求出最值即可.【题目详解】(1)设这种台灯的售价应定为x元,根据题意得:(x-30)[600-10(x-40)]=10000,x2-130x+4000=0,x1=80,x2=50,则600-10(80-40)=200(个),600-10(50-40)=500(个),答:这种台灯的售价应定为元或元,这时应进台灯个或个;根据题意得:设利润为,则,则(个),∴商场要想每月的销售利润最多,这种台灯的售价定为元,这时应进台灯个.20、(1)作图见解析;(2)作图见解析;(3)2π.【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC扫过的面积=,由此计算即可;【题目详解】(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积===2π.【题目点拨】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.21、(1)详见解析;(2)4.【解题分析】试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切线;(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.22、(1)DE与⊙O相切;理由见解析;(2)4.【分析】(1)连接OD,由D为的中点,得到,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;

(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由得到∠DAC=∠DCA=45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【题目详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为的中点∴∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴=∴=∴AD=DC=4,CE=,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=4,∴AC==8∴⊙O的半径为4.【题目点拨】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.23、(1)详见解析;(2).【分析】(1)根据两角对应相等的两个三角形相似即可证明.(2)利用相似三角形的性质证明∠BCE=∠ECM=∠DCM=30°即可解决问题.【题目详解】(1)∵矩形ABCD,∴∠A=∠B=∠D=90°,∵将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,∴∠MEC=∠D=90°,∴∠AEM+∠BEC=90°,∵∠AEM+∠AME=90°,∴∠AME=∠EBC,又∵∠A=∠B,∴△AME∽△BEC.(2)∵△EMC∽△AME,∴∠AEM=∠ECM,∵△AME∽△BEC,∴∠AEM=∠BCE,∴∠BCE=∠ECM由折叠可知:△ECM≌△DCM,∴∠DCM=∠ECM,DC=EC,即∠BCE=∠ECM=∠DCM=30°,在Rt△BCE中,,∴,∵DC=EC=AB,∴.【题目点拨】此题考查矩形的性质,相似三角形的判定及性质,利用30角的余弦值求边长的比,利用三角形相似及折叠得到∠BCE=∠ECM=∠DCM=30°是解题的关键.24、(1)54人,画图见解析;(2)160名.【分析】(1)根据喜欢“分组合作学习”方式的圆心角度数和频数可求总数,从而得出非常喜欢“分组合作学习”方式的人数,补全条形图.(2)利用扇形图得出支持“分组合作学习”方式所占的百分比,利用样本估计总体即可.【题目详解】解:(1)∵喜欢“分组合作学习”方式的圆心角度数为120°,频数为18,∴本次被调查的八年级学生的人数为:18÷=54(人).∴非常喜欢“分组合作学习”方式的人数为:54﹣18﹣6=30(人),如图补全条形图:(2)∵“非常喜欢”和“喜欢”两种情况在扇形统计图中所占圆心角为:120°+200°=320°,∴支持“分组合作学习”方式所占百分比为:×100%,∴该校八年级学生共180人

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论