![2024届江苏省常州市勤业中学数学九上期末经典模拟试题含解析_第1页](http://file4.renrendoc.com/view/1fdebaaafbfd9af82f534070a502beb9/1fdebaaafbfd9af82f534070a502beb91.gif)
![2024届江苏省常州市勤业中学数学九上期末经典模拟试题含解析_第2页](http://file4.renrendoc.com/view/1fdebaaafbfd9af82f534070a502beb9/1fdebaaafbfd9af82f534070a502beb92.gif)
![2024届江苏省常州市勤业中学数学九上期末经典模拟试题含解析_第3页](http://file4.renrendoc.com/view/1fdebaaafbfd9af82f534070a502beb9/1fdebaaafbfd9af82f534070a502beb93.gif)
![2024届江苏省常州市勤业中学数学九上期末经典模拟试题含解析_第4页](http://file4.renrendoc.com/view/1fdebaaafbfd9af82f534070a502beb9/1fdebaaafbfd9af82f534070a502beb94.gif)
![2024届江苏省常州市勤业中学数学九上期末经典模拟试题含解析_第5页](http://file4.renrendoc.com/view/1fdebaaafbfd9af82f534070a502beb9/1fdebaaafbfd9af82f534070a502beb95.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省常州市勤业中学数学九上期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知点(﹣4,y1)、(4,y2)都在函数y=x2﹣4x+5的图象上,则y1、y2的大小关系为()A.y1<y2 B.y1>y2 C.y1=y2 D.无法确定2.在下列图形中,是中心对称图形而不是轴对称图形的是()A.圆 B.等边三角形 C.梯形 D.平行四边形3.下列四个物体的俯视图与右边给出视图一致的是()A. B. C. D.4.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=35°,那么∠BAD等于()A.35° B.45° C.55° D.65°5.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A. B. C.10 D.86.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移1个单位7.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点DC.点M D.点N8.已知x=1是方程x2+px+1=0的一个实数根,则p的值是()A.0 B.1 C.2 D.﹣29.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧上一点,如果∠AOB=58º,那么∠ADC的度数为()A.32º B.29º C.58º D.116º10.一个不透明的袋中装有2个红球和4个黄球,这些球除颜色外完全相同.从袋中随机摸出一个球,摸到黄球的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图一次函数的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数的图象于Q,,则Q点的坐标为_____________12.圆弧形蔬菜大棚的剖面如图,已知AB=16m,半径OA=10m,OC⊥AB,则中柱CD的高度为_________m.13.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.4km,则M,C两点间的距离为______km.14.如图,已知,,则_____.15.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是_____个.16.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′=______.17.如图,在四边形中,,,,点为边上一点,连接.,与交于点,且,若,,则的长为_______________.18.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=°.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0),直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F.(1)求抛物线的解析式;(2)连接AE,求h为何值时,△AEF的面积最大.(3)已知一定点M(﹣2,0),问:是否存在这样的直线y=h,使△BDM是等腰三角形?若存在,请求出h的值和点D的坐标;若不存在,请说明理由.20.(6分)如图,在中,,的平分线交于点,点在上,以点为圆心,为半径的圆恰好经过点,分别交,于点,(1)试判断直线与的位置关系,并说明理由.(2)若,,求阴影部分的面积(结果保留)21.(6分)如图,点分别在的边上,已知.(1)求证:.(2)若,求的长.22.(8分)如图1,正方形的边在正方形的边上,连接.(1)和的数量关系是____________,和的位置关系是____________;(2)把正方形绕点旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形的边长为4,正方形的边长为,正方形绕点旋转过程中,若三点共线,直接写出的长.23.(8分)某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为万元/辆,经销一段时间后发现:当该型号汽车售价定为万元/辆时,平均每周售出辆;售价每降低万元,平均每周多售出辆.(1)当售价为万元/辆时,平均每周的销售利润为___________万元;(2)若该店计划平均每周的销售利润是万元,为了尽快减少库存,求每辆汽车的售价.24.(8分)一个不透明的盒子中装有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了颜色外其余均相同.从盒中随机摸出一枚棋子,记下颜色后放回并搅匀,再从盒子中随机摸出一枚棋子,记下颜色,用画树状图(或列表)的方法,求两次摸出的棋子颜色不同的概率.25.(10分)抛物线的顶点为,且过点,求它的函数解析式.26.(10分)用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18m(1)若围成的面积为72m2,球矩形的长与宽;(2)菜园的面积能否为120m2,为什么?
参考答案一、选择题(每小题3分,共30分)1、B【分析】首先根据二次函数解析式确定抛物线的对称轴为x=2,再根据抛物线的增减性以及对称性可得y1,y2的大小关系.【题目详解】解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴对称轴为x=2,∵a>0,∴x>2时,y随x增大而增大,点(﹣4,y1)关于抛物线的对称轴x=2对称的点是(8,y1),8>4,∴y1>y2,故选:B.【题目点拨】本题主要考查的是二次函数的增减性,从对称轴分开,二次函数左右两边的增减性不相同结合题意即可解出此题.2、D【解题分析】解:选项A、是中心对称图形,也是轴对称图形,故此选项错误;选项B、不是中心对称图形,是轴对称图形,故此选项错误;选项C、不是中心对称图形,是轴对称图形,故此选项错误;选项D、是中心对称图形,不是轴对称图形,故此选项正确;故选D.3、C【题目详解】解:几何体的俯视图为,故选C【题目点拨】本题考查由三视图判断几何体,难度不大.4、C【分析】根据题意可知、,通过与互余即可求出的值.【题目详解】解:∵∴∵是的直径∴∴故选:C【题目点拨】本题考查了圆周角定理,同弧所对的圆周角相等、并且等于它所对的圆心角的一半,也考查了直径所对的圆周角为90度.5、A【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【题目详解】解:如图,连结AE,设AC交EF于O,依题意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因为EF为线段AC的中垂线,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【题目点拨】本题考查了全等三角形的判定、勾股定理,熟练掌握是解题的关键.6、D【解题分析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.7、A【解题分析】试题分析:根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.故选A.考点:位似变换.8、D【分析】把x=1代入x2+px+1=0,即可求得p的值.【题目详解】把x=1代入把x=1代入x2+px+1=0,得1+p+1=0,∴p=-2.故选D.【题目点拨】本题考查了一元二次方程的解得定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.9、B【分析】根据垂径定理可得,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【题目详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴,∴∠ADC=∠AOB=29°.故选B.【题目点拨】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、B【解题分析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵地口袋中共有2+4=6个球,其中黄球3个,∴随机抽取一个球是黄球的概率是.故选B.考点:概率.二、填空题(每小题3分,共24分)11、(2,)【解题分析】因为三角形OQC的面积是Q点的横纵坐标乘积的一半,所以可求出k的值,PC为中位线,可求出C的横坐标,也是Q的横坐标,代入反比例函数可求出纵坐标【题目详解】解:设A点的坐标为(a,0),B点坐标为(0,b),
分别代入,解方程得a=4,b=-2,
∴A(4,0),B(0,-2)∵PC是△AOB的中位线,
∴PC⊥x轴,即QC⊥OC,
又Q在反比例函数的图象上,
∴2S△OQC=k,
∴k=2×=3,
∵PC是△AOB的中位线,
∴C(2,0),
可设Q(2,q)∵Q在反比例函数的图象上,
∴q=,
∴点Q的坐标为(2
,
).点睛:本题考查反比例函数的综合运用,关键是知道函数上面取点后所得的三角函数的面积和点的坐标之间的关系.12、4【分析】根据垂径定理可得AD=AB,然后由勾股定理可得OD的长,继而可得CD的高求解.【题目详解】解:∵CD垂直平分AB,∴AD=1.∴OD==6m,∴CD=OC−OD=10−6=4(m).故答案是:4【题目点拨】本题考查垂径定理和勾股定理的实际应用,掌握这些知识点是解题关键.13、1.1【解题分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=12AB=1.1km【题目详解】∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=12故答案为:1.1.【题目点拨】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.14、105°【解题分析】如图,根据邻补角的定义求出∠3的度数,继而根据平行线的性质即可求得答案.【题目详解】∵∠1+∠3=180°,∠1=75°,∴∠3=105°,∵a//b,∴∠2=∠3=105°,故答案为:105°.【题目点拨】本题考查了邻补角的定义,平行线的性质,熟练掌握两直线平行,内错角相等是解本题的关键.15、1【分析】根据几何体的三视图可进行求解.【题目详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=1(个).故答案为1.【题目点拨】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.16、3【分析】根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大小.【题目详解】解:根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,∴△APP′是等腰直角三角形,由勾股定理得PP′=.故答案为.【题目点拨】本题考查了图形的旋转变化,旋转得到的图形与原图形全等,解答时要分清旋转角和对应线段.17、【解题分析】由,知点A,C都在BD的垂直平分线上,因此,可连接交于点,易证是等边三角形,是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC的长度,应用勾股定理可求解.【题目详解】解:如图,连接交于点∵,,,∴垂直平分,是等边三角形∴,,∵∴,∴∴∴∵∴是等边三角形∴∴,∴∴【题目点拨】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.18、70【解题分析】∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∴∠A1OA=100°.又∵∠AOB=30°,∴∠A1OB=∠A1OA-∠AOB=70°.三、解答题(共66分)19、(1)y=﹣x2﹣x+1;(2)当h=3时,△AEF的面积最大,最大面积是.(3)存在,当h=时,点D的坐标为(,);当h=时,点D的坐标为(,).【分析】(1)利用待定系数法即可解决问题.(2)由题意可得点E的坐标为(0,h),点F的坐标为(,h),根据S△AEF=•OE•FE=•h•=﹣(h﹣3)2+.利用二次函数的性质即可解决问题.(3)存在.分两种情形情形,分别列出方程即可解决问题.【题目详解】解:如图:(1)∵抛物线y=ax2+bx+1经过点A(﹣3,0)和点B(2,0),∴,解得:.∴抛物线的解析式为y=﹣x2﹣x+1.(2)∵把x=0代入y=﹣x2﹣x+1,得y=1,∴点C的坐标为(0,1),设经过点A和点C的直线的解析式为y=mx+n,则,解得,∴经过点A和点C的直线的解析式为:y=2x+1,∵点E在直线y=h上,∴点E的坐标为(0,h),∴OE=h,∵点F在直线y=h上,∴点F的纵坐标为h,把y=h代入y=2x+1,得h=2x+1,解得x=,∴点F的坐标为(,h),∴EF=.∴S△AEF=•OE•FE=•h•=﹣(h﹣3)2+,∵﹣<0且0<h<1,∴当h=3时,△AEF的面积最大,最大面积是.(3)存在符合题意的直线y=h.∵B(2,0),C(0,1),∴直线BC的解析式为y=﹣3x+1,设D(m,﹣3m+1).①当BM=BD时,(m﹣2)2+(﹣3m+1)2=42,解得m=或(舍弃),∴D(,),此时h=.②当MD=BM时,(m+2)2+(﹣3m+1)2=42,解得m=或2(舍弃),∴D(,),此时h=.∵综上所述,存在这样的直线y=或y=,使△BDM是等腰三角形,当h=时,点D的坐标为(,);当h=时,点D的坐标为(,).【题目点拨】此题考查了待定系数法求函数的解析式、二次函数的性质、等腰三角形的性质、勾股定理一次函数的应用等知识,此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.20、(1)与相切,见解析;(2)【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)在直角三角形OBD中,设,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,进而求出圆心角的度数,再用直角三角形的面积减去扇形DOF的面积即可确定出阴影部分的面积.【题目详解】解:(1)与相切证明:连接,是的平分线,,,则,,即又过半径的外端点与相切(2)设,则,根据勾股定理得,即解得:,即中,,,扇形,阴扇形阴影部分的面积为.【题目点拨】本题考查的是圆的相关知识、勾股定理和不规则图形的面积问题,能够充分调动所学知识是解题的关键.21、(1)证明见解析(2)【分析】(1)根据三角形内角和定理以及相似三角形的判定定理即可求出答案;(2)根据相似三角形的性质即可求出答案.【题目详解】解:(1)证明:在中,,∴.又∵在中,,∴,∴(2)∵,∴,∴,∵∴∴【题目点拨】本题考查了三角形内角和定理及相似三角形的判定与性质,解题的关键是熟练运用相似三角形的性质与判定.22、(1);(2)成立,见解析;(3)和【分析】(1)由题意通过证明,得到,再通过等量代换,得到;(2)由题意利用全等三角形的判定证明,得到,再通过等量代换进而得到;(3)根据题意分E在线段AC上以及E在线段AC的延长线上两种情况进行分类讨论.【题目详解】解:(1)∵四边形和四边形都是正方形,∴BC=CD,EC=CG,∴(SAS),∴;又∵;∴∴;(2)如图:成立,证明:,∴,∴,又∵,∴,即(3)①如图,E在线段AC上,∵∴OE=EC-OC==,OB==2,由勾股定理可知DG=BE=;②如图,E在线段AC的延长线上,∵∴,∴∴在中∵∴.故答案为:和.【题目点拨】本题考查正方形的性质以及全等三角形,熟练掌握正方形的性质以及全等三角形的判定与性质是解题的关键.23、(1)(2)万元【分析】(1)根据当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆,即可求出当售价为22万元/辆时,平均每周的销售量,再根据销售利润=一辆汽车的利润×销售数量列式计算;(2)设每辆汽车降价x万元,根据每辆的盈利×销售的辆数=90万元,列方程求出x的值,进而得到每辆汽车的售价.【题目详解】(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是:×1+8=14,则此时,平均每周的销售利润是:(22−15)×14=98(万元);(2)设每辆汽车降价x万元,根据题意得:(25−x−15)(8+2x)=90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年分包合同执行进度报告
- 2025年中草药材料订购合同示例
- 2025年劳动合同模板设计专业范本
- 2025年劳动合同终止法律规定指南
- 2025年餐饮酒店物资订购合同
- 2025年上海市合规汽车租赁策划合同书
- 2025人事专员合同简化模板
- 2025年医疗保健机构劳动合同样本
- 2025年中国银行城市更新贷款合同
- 2025年基础设施开发土方运输合同文件
- (正式版)HG∕T 21633-2024 玻璃钢管和管件选用规定
- 人教版《道德与法治》二年级下册全册优秀课件
- RB/T 040-2020病原微生物实验室生物安全风险管理指南
- GB/T 889.1-2000I型非金属嵌件六角锁紧螺母
- 构建物联网系统原型-教学设计
- (完整word版)家谱WORD样本
- 无主之地2全装备代码
- 小升初广东省深圳市2021-2022学年六年级下学期期末数学真题测试模拟卷(解答题)有解析
- DB32∕T 2882-2016 城市轨道交通桥隧结构养护技术规程
- 血液透析应急流程图+
- 京东考试答案参考
评论
0/150
提交评论