




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届成都市教科院附属学校数学九年级第一学期期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,矩形ABCD中,连接AC,延长BC至点E,使,连接DE,若,则∠E的度数是()A.65° B.60° C.50° D.40°2.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是抛物线上两点,则y1<y2A.①② B.②③ C.②④ D.①③④3.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为()A. B. C. D.4.二次函数图象上部分点的坐标对应值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=05.下列说法中,不正确的是()A.所有的菱形都相似 B.所有的正方形都相似C.所有的等边三角形都相似 D.有一个角是100°的两个等腰三角形相似6.在平面直角坐标系中,以原点为旋转中心,把A(3,4)逆时针旋转180°,得到点B,则点B的坐标为()A.(4,-3) B.(-4,3) C.(-3,4) D.(-3,-4)7.如图,点,,均在坐标轴上,,过,,作,是上任意一点,连结,,则的最大值是()A.4 B.5 C.6 D.8.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A. B.1.5cm C. D.1cm9.如图是某货站传送货物的机器的侧面示意图.,原传送带与地面的夹角为,为了缩短货物传送距离,工人师傅欲增大传送带与地面的夹角,使其由改为,原传送带长为.则新传送带的长度为()A. B. C. D.无法计算10.如图,将一个大平行四边形在一角剪去一个小平行四边形,如果用直尺画一条直线将其剩余部分分割成面积相等的两部分,这样的不同的直线一共可以画出()A.1条 B.2条 C.3条 D.4条二、填空题(每小题3分,共24分)11.若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_____.12.已知m,n是一元二次方程的两根,则________.13.如图,路灯距离地面,身高的小明站在距离路灯底部(点)的点处,则小明在路灯下的影子长为_____.14.某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦•青春梦”演讲比赛,则恰好选中一男一女的概率是_____.15.若,则代数式的值为________________.16.微信给甲、乙、丙三人,若微信的顺序是任意的,则第一个微信给甲的概率为_____.17.某种传染病,若有一人感染,经过两轮传染后将共有49人感染.设这种传染病每轮传染中平均一个人传染了x个人,列出方程为______.18.有三张除颜色外,大小、形状完全相同的卡片,第一张卡片两面都是红色,第二张卡片两面都是白色,第三张卡片一面是红色,一面是白色,用三只杯子分别把它们遮盖住,若任意移开其中的一只杯子,则看到的这张卡片两面都是红色的概率是__________.三、解答题(共66分)19.(10分)如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于多少;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.20.(6分)如图,抛物线与轴相交于两点(点在点的左侧),与轴相交于点.抛物线上有一点,且.(1)求抛物线的解析式和顶点坐标.(2)当点位于轴下方时,求面积的最大值.(3)①设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.求关于的函数解析式,并写出自变量的取值范围;②当时,点的坐标是___________.21.(6分)如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=11,CD=1.求⊙O半径的长.22.(8分)如图1,在平面直角坐标系中,函数(为常数,,)的图象经过点和,直线与轴,轴分别交于,两点.(1)求的度数;(2)如图2,连接、,当时,求此时的值:(3)如图3,点,点分别在轴和轴正半轴上的动点.再以、为邻边作矩形.若点恰好在函数(为常数,,)的图象上,且四边形为平行四边形,求此时、的长度.23.(8分)已知二次函数.(1)当时,求函数图象与轴的交点坐标;(2)若函数图象的对称轴与原点的距离为2,求的值.24.(8分)元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系中,⊙经过坐标原点,并与两坐标轴分别交于、两点,点的坐标为,点在⊙上,且,求⊙的半径.图1图2元元的做法如下,请你帮忙补全解题过程.解:如图2,连接,是⊙的直径.(依据是)且(依据是).即⊙的半径为.25.(10分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.26.(10分)如图,在淮河的右岸边有一高楼,左岸边有一坡度的山坡,点与点在同一水平面上,与在同一平面内.某数学兴趣小组为了测量楼的高度,在坡底处测得楼顶的仰角为,然后沿坡面上行了米到达点处,此时在处测得楼顶的仰角为,求楼的高度.(结果保留整数)(参考数)
参考答案一、选择题(每小题3分,共30分)1、A【分析】连接BD,与AC相交于点O,则BD=AC=BE,得△BDE是等腰三角形,由OB=OC,得∠OBC=50°,即可求出∠E的度数.【题目详解】解:如图,连接BD,与AC相交于点O,∴BD=AC=BE,OB=OC,∴△BDE是等腰三角形,∠OBC=∠OCB,∵,∠ABC=90°,∴∠OBC=,∴;故选择:A.【题目点拨】本题考查了矩形的性质,等腰三角形的判定和性质,三角形内角和定理,以及直角三角形两个锐角互余,解题的关键是正确作出辅助线,构造等腰三角形进行解题.2、C【解题分析】试题分析:根据题意可得:a<0,b>0,c>0,则abc<0,则①错误;根据对称轴为x=1可得:-b2a=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y>0,即4a+2b+c>0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a>0,如果开口向下,则a<0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.3、D【解题分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【题目详解】解:绿球的概率:P==,故选:D.【题目点拨】本题考查概率相关概念,熟练运用概率公式计算是解题的关键.4、B【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【题目详解】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣1.故选B.【题目点拨】本题考查二次函数的图象.5、A【分析】根据相似多边形的定义,即可得到答案.【题目详解】解:A、所有的菱形都相似,错误;B、所有的正方形都相似,正确;C、所有的等边三角形都相似,正确;D、有一个角是100°的两个等腰三角形相似,正确;故选:A.【题目点拨】本题考查了相似多边形的定义,熟练掌握相似多边形的性质:对应角相等,对应边成比例是解题的关键.6、D【分析】由题意可知点B与点A关于原点O中心对称,根据关于原点对称,横纵坐标均互为相反数可得B点坐标.【题目详解】解:因为点B是以原点为旋转中心,把A(3,4)逆时针旋转180°得到的,所以点B与点A关于原点O中心对称,所以点.故选:D【题目点拨】本题主要考查了平面直角坐标系中的点对称,理解中心对称的定义是解题的关键.7、C【分析】连接,,如图,利用圆周角定理可判定点在上,易得,,,,,设,则,由于表示点到原点的距离,则当为直径时,点到原点的距离最大,由于为平分,则,利用点在圆上得到,则可计算出,从而得到的最大值.【题目详解】解:连接,,如图,,为的直径,点在上,,,,,,,设,,而表示点到原点的距离,当为直径时,点到原点的距离最大,为平分,,,,即,此时,即的最大值是1.故选:.【题目点拨】本题考查了点与圆的位置关系、圆周角定理、勾股定理等,作出辅助线,得到是解题的关键.8、D【题目详解】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,,解得:r=1.故选D.9、B【分析】根据已知条件,在中,求出AD的长,再在中求出AC的值.【题目详解】,,=8即即故选B.【题目点拨】本题考查了解直角三角形的应用,熟练掌握特殊角的三角函数值是解题的关键.10、C【分析】利用平行四边形的性质分割平行四边形即可.【题目详解】解:如图所示,这样的不同的直线一共可以画出三条,故答案为:1.【题目点拨】本题考查平行四边形的性质,解题的关键是掌握平行四边形的中心对称性.二、填空题(每小题3分,共24分)11、【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【题目详解】∵圆锥的底面圆的周长是,∴圆锥的侧面扇形的弧长为cm,,解得:故答案为.【题目点拨】此题考查弧长的计算,解题关键在于求得圆锥的侧面积12、-1【分析】根据根与系数的关系求出m+n与mn的值,然后代入计算即可.【题目详解】∵m,n是一元二次方程的两根,∴m+n=2,mn=-3,∴2-3=-1.故答案为:-1.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.13、4【分析】,从而求得.【题目详解】解:,解得.【题目点拨】本题主要考查的相似三角形的应用.14、【解题分析】结合题意,画树状图进行计算,即可得到答案.【题目详解】画树状图为:共20种等可能的结果数,其中选中一男一女的结果数为12,∴恰好选中一男一女的概率是,故答案为:.【题目点拨】本题考查概率,解题的关键是熟练掌握树状图法求概率.15、2019【分析】所求的式子前三项分解因式,再把已知的式子整体代入计算即可.【题目详解】解:∵,∴.故答案为:2019.【题目点拨】本题考查了代数式求值、分解因式和整体的数学思想,属于常见题型,灵活应用整体的思想是解题关键.16、【分析】根据题意,微信的顺序是任意的,微信给甲、乙、丙三人的概率都相等均为.【题目详解】∵微信的顺序是任意的,∴微信给甲、乙、丙三人的概率都相等,∴第一个微信给甲的概率为.故答案为.【题目点拨】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17、x(x+1)+x+1=1.【分析】设每轮传染中平均一人传染x人,那么经过第一轮传染后有x人被感染,那么经过两轮传染后有x(x+1)+x+1人感染,列出方程即可.【题目详解】解:设每轮传染中平均一人传染x人,则第一轮后有x+1人感染,第二轮后有x(x+1)+x+1人感染,由题意得:x(x+1)+x+1=1.故答案为:x(x+1)+x+1=1.【题目点拨】本题主要考查了由实际问题抽象出一元二次方程,掌握一元二次方程是解题的关键.18、【分析】根据概率的相关性质,可知两面都是红色的概率=两面都是红色的张数/总张数.【题目详解】P(两面都是红色)=.【题目点拨】本题主要考察了概率的相关性质.三、解答题(共66分)19、(1);(2).【分析】(1)根据概率公式直接填即可;
(2)依据题意分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【题目详解】解:(1)有4个开关,只有D开关一个闭合小灯发亮,所以任意闭合其中一个开关,则小灯泡发光的概率是;(2)画树状图如右图:结果任意闭合其中两个开关的情况共有12种,其中能使小灯泡发光的情况有6种,小灯泡发光的概率是.【题目点拨】本题考查的知识点是概率的求法,解题关键是熟记概率=所求情况数与总情况数之比.20、(1),顶点坐标为;(2)8;(3)①;②.【分析】(1)将点C代入表达式即可求出解析式,将表达式转换为顶点式即可写出顶点坐标;(2)根据题目分析可知,当点P位于抛物线顶点时,△ABP面积最大,根据解析式求出A、B坐标,从而得到AB长,再利用三角形面积公式计算面积即可;(3)①分三种情况:0<m≤1、1<m≤2以及m>2时,分别进行计算即可;②将h=9代入①中的表达式分别计算判断即可.【题目详解】解:(1)将点代入,得,解得,∴,∵,∴抛物线的顶点坐标为;(2)令,解得或,∴,,∴,当点与抛物线顶点重合时,△ABP的面积最大,此时;(3)①∵点C(0,-3)关于对称轴x=1对称的点的坐标为(2,-3),P(m,),∴当时,,当时,,当时,,综上所述,;②当h=9时,若,此时方程无解,若,解得m=4或m=-2(不合题意,舍去),∴P(4,5).【题目点拨】本题为二次函数综合题,需熟练掌握二次函数表达式求法及二次函数的性质,对于动点问题正确分析出所存在的所有情况是解题关键.21、2【解题分析】试题分析:连接OA,根据垂径定理求出AD=6,∠ADO=90°,根据勾股定理得出方程,求出方程的解即可.试题解析:连接AO,∵点C是弧AB的中点,半径OC与AB相交于点D,∴OC⊥AB,∵AB=11,∴AD=BD=6,设⊙O的半径为r,∵CD=1,∴在Rt△AOD中,由勾股定理得:AD1=OD1+AD1,即:r1=(r﹣1)1+61,∴r=2,答:⊙O的半径长为2.22、(1);(2);(3)【分析】(1)根据点P、Q的坐标求出直线PQ的解析式,得到点C、D的坐标,根据线段长度得到的度数;(2)根据已知条件求出∠QOP=45,再由即可求出m的值;(3)根据平行四边形及矩形的性质得到,,设设,得到点M的坐标,又由两者共同求出n,得到结果.【题目详解】(1)由,,得,∴,∴,∴为等腰直角三角形,∴;(2)∵,∴,∴易得,∴,∴(舍负);(3)∵四边形为平行四边形,∴,又,∴,∴.设.则为代入,∴,∴,又,∴,由,得(舍负),∴当时,符合题意.【题目点拨】此题是反比例函数与一次函数的综合题,考查反比例函数的性质,一次函数的性质,勾股定理,矩形的性质,平行四边形的性质.23、(1)和;(2)或-1.【分析】(1)把k=2代入,得.再令y=0,求出x的值,即可得出此函数图象与x轴的交点坐标;(2)函数图象的对称轴与原点的距离为2,列出方程求解即可.【题目详解】(1)∵,∴,令,则,解得,∴函数图象与轴的交点坐标为和.(2)∵函数图象的对称轴与原点的距离为2,∴,解得或-1.【题目点拨】本题考查了抛物线与x轴的交点,二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.24、的圆周角所对的弦是直径;同弧所对的圆周角相等,【分析】连接BC,则BC为直径,根据圆周角定理,得到,再由30°所对直角边等于斜边的一半,即可得到答案.【题目详解】解:如图1,连接,,是⊙的直径.(90°的圆周角所对的弦是直径)且,,(同弧所对的圆周角相等),,.即⊙的半径为1.故答案为:的圆周角所对的弦是直径;同弧所对的圆周角相等;.【题目点拨】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理进行解题.25、不公平【解题分析】列表得出所有等可能的情况数,找出两次数字差的绝对值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乐器批发市场的行业规范与标准考核试卷
- 生物制药进展考核试卷
- 规培外科基本操作
- 电容器电荷存储能力分析与优化考核试卷
- 焙烤食品制造的市场开拓与销售策略考核试卷
- 木材的挤出和注塑工艺考核试卷
- 电池结构设计与仿真分析考核试卷
- 有机化学原料的全球市场趋势考核试卷
- 电声器件在智能机器人清洁器中的应用考核试卷
- 杂粮加工健康食品配方设计考核试卷
- 农业推广学复习要点
- 人员素质测评理论与方法
- 【人教版】《劳动教育》六上 劳动项目六《制造手工肥皂》课件
- 部编版四年级语文下册期中试卷+ 答题卡(含答案)
- DB53∕T 1269-2024 改性磷石膏用于矿山废弃地生态修复回填技术规范
- 财务报表分析-第五章 营运能力分析
- mm立式矫直机辊系设计
- (教学设计)专题4 第2单元 基础课时13 羧酸的性质及应用2023-2024学年新教材高中化学选择性必修3(苏教版2019)
- 《建筑玻璃膜应用技术规程 JGJT351-2015》
- 2024年黑龙江龙东地区初中毕业学业统一考试中考物理试卷(真题+答案解析)
- 人教版音乐三年级下册第五单元 打字机 教案
评论
0/150
提交评论