




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省泰兴市洋思中学数学九年级第一学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()A. B. C. D.2.已知(,),下列变形错误的是()A. B. C. D.3.方程5x2=6x﹣8化成一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是()A.5、6、﹣8B.5,﹣6,﹣8C.5,﹣6,8D.6,5,﹣84.二次函数的顶点坐标是()A. B. C. D.5.掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上 B.可能有3次正面朝上C.至少有1次正面朝上 D.不可能有6次正面朝上6.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:,则AC的长是()A.10米 B.米 C.15米 D.米7.寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为()A. B. C. D.8.在反比例函数的图象的每个象限内,y随x的增大而增大,则k值可以是()A.-1 B.1 C.2 D.39.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a-b+c>0;④m>-2,其中,正确的个数有A.1个 B.2个 C.3个 D.4个11.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()A. B. C. D.12.在平面直角坐标系中,二次函数与坐标轴交点个数()A.3个 B.2个 C.1个 D.0个二、填空题(每题4分,共24分)13.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是__________.14.如图,在半径为5的中,弦,,垂足为点,则的长为__________.15.在平面直角坐标系中,二次函数与反比例函数的图象如图所示,若两个函数图象上有三个不同的点,,,其中为常数,令,则的值为_________.(用含的代数式表示)16.如图,△ABC的顶点A、B、C都在边长为1的正方形网格的格点上,则sinA的值为________.17.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.18.如图,在中,点在边上,连接并延长交的延长线于点,若,则__________.三、解答题(共78分)19.(8分)如图,为了测量一栋楼的高度,小明同学先在操场上处放一面镜子,向后退到处,恰好在镜子中看到楼的顶部;再将镜子放到处,然后后退到处,恰好再次在镜子中看到楼的顶部(在同一条直线上),测得,如果小明眼睛距地面高度,为,试确定楼的高度.20.(8分)如图,Rt△ABC中,∠C=90°,E是AB边上一点,D是AC边上一点,且点D不与A、C重合,ED⊥AC.(1)当sinB=时,①求证:BE=2CD.②当△ADE绕点A旋转到如图2的位置时(45°<∠CAD<90°).BE=2CD是否成立?若成立,请给出证明;若不成立.请说明理由.(2)当sinB=时,将△ADE绕点A旋转到∠DEB=90°,若AC=10,AD=2,求线段CD的长.21.(8分)为了提高教学质量,促进学生全面发展,某中学计划投入99000元购进一批多媒体设备和电脑显示屏,且准备购进电脑显示屏的数量是多媒体设备数量的6倍.现从商家了解到,一套多媒体设备和一个电脑显示屏的售价分别为3000元和600元.(1)求最多能购进多媒体设备多少套?(2)恰逢“双十一”活动,每套多媒体设备的售价下降,每个电脑显示屏的售价下降元,学校决定多媒体设备和电脑显示屏的数量在(1)中购进最多量的基础上都增加,实际投入资金与计划投入资金相同,求的值.22.(10分)用配方法解方程2x2-4x-3=0.23.(10分)小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验.他们在一次实验中共掷骰子次,试验的结果如下:朝上的点数出现的次数
①填空:此次实验中“点朝上”的频率为________;②小红说:“根据实验,出现点朝上的概率最大.”她的说法正确吗?为什么?小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.24.(10分)如图所示,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长.(2)求经过O,D,C三点的抛物线的解析式.(3)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ.(4)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,直接写出M点的坐标;若不存在,请说明理由.25.(12分)2018年12月1日,贵阳地铁一号线正式开通,标志着贵阳中心城区正式步入地铁时代,为市民的出行带来了便捷,如图是贵阳地铁一号线路图(部分),菁菁与琪琪随机从这几个站购票出发.(1)菁菁正好选择沙冲路站出发的概率为(2)用列表或画树状图的方法,求菁菁与琪琪出发的站恰好相邻的概率.26.(1)解方程:(2)如图,正六边形的边长为2,以点为圆心,长为半径画弧,求弧的长.
参考答案一、选择题(每题4分,共48分)1、D【分析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【题目详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的长为,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=故选:D.【题目点拨】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.2、B【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【题目详解】解:由,得出,3b=4a,A.由等式性质可得:3b=4a,正确;B.由等式性质可得:4a=3b,错误;C.由等式性质可得:3b=4a,正确;D.由等式性质可得:4a=3b,正确.故答案为:B.【题目点拨】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.3、C【解题分析】根据一元二次方程的一般形式进行解答即可.【题目详解】5x2=6x﹣8化成一元二次方程一般形式是5x2﹣6x+8=0,它的二次项系数是5,一次项系数是﹣6,常数项是8,故选C.【题目点拨】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.4、B【分析】根据抛物线的顶点式:,直接得到抛物线的顶点坐标.【题目详解】解:由抛物线为:,抛物线的顶点为:故选B.【题目点拨】本题考查的是抛物线的顶点坐标,掌握抛物线的顶点式是解题的关键.5、B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【题目详解】解:掷硬币问题,正、反面朝上的次数属于随机事件,不是确定事件,故A,C,D错误.
故选:B.【题目点拨】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、B【解题分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【题目详解】Rt△ABC中,BC=5米,tanA=1:;∴AC=BC÷tanA=5米;故选:B.【题目点拨】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.7、B【解题分析】由小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,直接利用概率公式求解即可求得答案.【题目详解】解:∵小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,
∴小明选择到甲社区参加实践活动的可能性为:.
故选:B.【题目点拨】本题考查概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8、A【解题分析】因为的图象,在每个象限内,y的值随x值的增大而增大,所以k−1<0,即k<1.故选A.9、B【解题分析】先根据根的判别式得出方程有两个不相等的实数根,设方程x2+bx-2=0的两个根为c、d,根据根与系数的关系得出c+d=-b,cd=-2,再判断即可.【题目详解】x2+bx−2=0,△=b2−4×1×(−2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx−2=0的两个根为c、d,则c+d=−b,cd=−2,由cd=−2得出方程的两个根一正一负,由c+d=−b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,故答案选:B.【题目点拨】本题考查的知识点是根的判别式及根与系数的关系,解题的关键是熟练的掌握根的判别式及根与系数的关系.10、C【题目详解】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故③选项正确;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,∴关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,则m>﹣2,故④正确.故选C.考点:二次函数图象与系数的关系.11、C【解题分析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)==.故选C.12、B【分析】首先根据根的判别式判定与轴的交点,然后令,判定与轴的交点,即可得解.【题目详解】由题意,得∴该函数与轴有一个交点当时,∴该函数与轴有一个交点∴该函数与坐标轴有两个交点故答案为B.【题目点拨】此题主要考查利用根的判别式判定二次函数与坐标轴的交点,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、【分析】从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,得出组成的两位数总个数及能被3整除的数的个数,求概率.【题目详解】∵从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,共有6种情况,它们分别是56、57、65、67、75、76,其中能被3整除的有57、75两种,∴组成两位数能被3整除的概率为:故答案为:【题目点拨】本题考查的是直接用概率公式求概率问题,找对符合条件的个数和总个数是关键.14、4【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【题目详解】连接OA,∵AB⊥OP,∴AP=AB=×6=3,∠APO=90°,又OA=5,∴OP===4,故答案为:4.【题目点拨】本题考查的是垂径定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.15、【分析】根据题意由二次函数的性质、反比例函数的性质可以用含m的代数式表示出W的值,本题得以解决.【题目详解】解:∵两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,
∴其中有两个点一定在二次函数图象上,且这两个点的横坐标互为相反数,第三个点一定在反比例函数图象上,
假设点A和点B在二次函数图象上,则点C一定在反比例函数图象上,
∴m=,得x3=,
∴=x1+x2+x3=0+x3=;故答案为:.【题目点拨】本题考查反比例函数的图象和图象上点的坐标特征、二次函数的图象和图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数和二次函数的性质解答.16、【解题分析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.17、2:1【解题分析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.18、【分析】根据相似三角形的判定与性质、平行四边形的性质,进而证明,得出线段的比例,即可得出答案【题目详解】在中,∴AD∥BC,∠DAE=∠CFE,∠ADE=∠FCE,∴△ADE∽△FCE∵DE=2EC,∴AD=2CF,在中,∵AD=BC,等量代换得:BC=2CF∴2:1【题目点拨】本题考查了相似三角形的判定与性质以及平行四边形的性质,数形结合是解题的关键.三、解答题(共78分)19、32米【分析】设关于的对称点为,根据光线的反射可知,延长、相交于点,连接并延长交于点,先根据镜面反射的基本性质,得出,再运用相似三角形对应边成比例即可解答.【题目详解】设关于的对称点为,根据光线的反射可知,延长、相交于点,连接并延长交于点,由题意可知且、∴∴∴即:∴∴答:楼的高度为米.【题目点拨】本题考查了相似三角形的应用、镜面反射的基本性质,准确作出辅助线是关键.20、(1)①证明见解析;②BE=2CD成立.理由见解析;(2)2或4.【分析】(1)①作EH⊥BC于点H,由sinB=可得∠B=30°,∠A=60°,根据ED⊥AC可证明四边形CDEH是矩形,根据矩形的性质可得EH=CD,根据正弦的定义即可得BE=2CD;②根据旋转的性质可得∠BAC=∠EAD,利用角的和差关系可得∠CAD=∠BAE,根据=可证明△ACD∽△ABE,及相似三角形的性质可得,进而可得BE=2CD;(2)由sinB=可得∠ABC=∠BAC=∠DAE=45°,根据ED⊥AC可得AD=DE,AC=BC,如图,分两种情况讨论,通过证明△ACD∽△ABE,求出CD的长即可.【题目详解】(1)①作EH⊥BC于点H,∵Rt△ABC中,∠C=90°,sinB=,∴∠B=30°,∴∠A=60°,∵ED⊥AC∴∠ADE=∠C=90°,∴四边形CDEH是矩形,即EH=CD.∴在Rt△BEH中,∠B=30°∴BE=2EH∴BE=2CD.②BE=2CD成立.理由:∵△ADE绕点A旋转到如图2的位置,∴∠BAC=∠EAD=60°,∴∠BAC+∠BAD=∠EAD+∠BAD,即∠CAD=∠BAE,∵AC:AB=1:2,AD:AE=1:2,∴,∴△ACD∽△ABE,∴,又∵Rt△ABC中,=2,∴=2,即BE=2CD.(2)∵sinB=,∴∠ABC=∠BAC=∠DAE=45°,∵ED⊥AC,∴∠AED=∠BAC=45°,∴AD=DE,AC=BC,将△ADE绕点A旋转,∠DEB=90°,分两种情况:①如图所示,过A作AF⊥BE于F,则∠F=90°,当∠DEB=90°时,∠ADE=∠DEF=90°,又∵AD=DE,∴四边形ADEF是正方形,∴AD=AF=EF=2,∵AC=10=BC,∴AB=10,∴Rt△ABF中,BF==6,∴BE=BF﹣EF=4,又∵△ABC和△ADE都是直角三角形,且∠BAC=∠EAD=45°,∴∠CAD=∠BAE,∵AC:AB=1:,AD:AE=1:,∴,∴△ACD∽△ABE,∴=,即=,∴CD=2;②如图所示,过A作AF⊥BE于F,则∠AFE=∠AFB=90°,当∠DEB=90°,∠DEB=∠ADE=90°,又∵AD=ED,∴四边形ADEF是正方形,∴AD=EF=AF=2,又∵AC=10=BC,∴AB=10,∴Rt△ABF中,BF==6,∴BE=BF+EF=8,又∵△ACD∽△ABE,∴=,即=,∴CD=4,综上所述,线段CD的长为2或4.【题目点拨】本题考查三角函数的定义、特殊角的三角函数值及相似三角形的判定与性质,根据正弦值得出∠ABC的度数并熟练掌握相似三角形的判定定理解题关键.21、(1)15套;(2)37.5【分析】(1)设购买A种设备x套,则购买B种设备6x套,根据总价=单价×数量结合计划投入99000元,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;(2)根据总价=单价×数量结合实际投入资金与计划投入资金相同,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【题目详解】(1)设能购买多媒体设备套,则购买显示屏6x套,根据题意得:解得:答:最多能购买多媒体设备15套.(2)由题意得:设,则原方程为:整理得:解得:,(不合题意舍去)∴.答:的值是37.5.【题目点拨】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,找出关于x的一元一次不等式;(2)找准等量关系,正确列出一元二次方程.22、x1=1+,x2=1-.【分析】借助完全平方公式,将原方程变形为,开方,即可解决问题.【题目详解】解:∵2x2-4x-3=0,点睛:用配方法解一元二次方程的步骤:移项(常数项右移)、二次项系数化为1、配方(方程两边同加一次项一半的平方)、开方、求解、定解23、(1)①;②说法是错误的.理由见解析;(2).【解题分析】(1)①让5出现的次数除以总次数即为所求的频率;②根据概率的意义,需要大量实验才行;
(2)列举出所有情况,比较两枚骰子朝上的点数之和的情况数,进而让最多的情况数除以所有情况数的即可.【题目详解】解:①;
②说法是错误的.在这次试验中,“点朝上”的频率最大并不能说明“点朝上”这一事件发生的概率最大.因为当试验的次数较大时,频率稳定于概率,但并不完全等于概率.
由表格可以看出,总情况数有种,之和为的情况数最多,为种,所以(点数之和为).【题目点拨】考查用列表格的方法解决概率问题及概率的意义;用到的知识点为:概率是大量实验下一个稳定的值;数学中概率等于所求情况数与总情况数之比.24、(1)3;(2);(3)t=;(1)存在,M点的坐标为(2,16)或(-6,16)或【分析】(1)由矩形的性质以及折叠的性质可求得CE、CO的长,在Rt△COE中,由勾股定理可求得OE的长;
(2)设AD=m,在Rt△ADE中,由勾股定理列方程可求得m的值,从而得出D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;
(3)用含t的式子表示出BP、EQ的长,可证明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(1)由(2)可知C(-1,0),E(0,-3),设N(-2,n),M(m,y),分以下三种情况:①以EN为对角线,根据对角线互相平分,可得CM的中点与EN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;②当EM为对角线,根据对角线互相平分,可得CN的中点与EM的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;③当CE为对角线,根据对角线互相平分,可得CE的中点与MN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案.【题目详解】解:(1)∵OABC为矩形,∴BC=AO=5,CO=AB=1.又由折叠可知,,;(2)设AD=m,则DE=BD=1-m,
∵OE=3,∴AE=5-3=2,在Rt△ADE中,AD2+AE2=DE2,∴m2+22=(1-m)2,∴m=,∴D,∵该抛物线经过C(-1,0)、O(0,0),∴设该抛物线解析式为,把点D代入上式得,∴a=,∴;(3)如图所示,连接DP、DQ.由题意可得,CP=2t,EQ=t,则BP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乐器批发市场的行业规范与标准考核试卷
- 生物制药进展考核试卷
- 规培外科基本操作
- 电容器电荷存储能力分析与优化考核试卷
- 焙烤食品制造的市场开拓与销售策略考核试卷
- 木材的挤出和注塑工艺考核试卷
- 电池结构设计与仿真分析考核试卷
- 有机化学原料的全球市场趋势考核试卷
- 电声器件在智能机器人清洁器中的应用考核试卷
- 杂粮加工健康食品配方设计考核试卷
- 农业推广学复习要点
- 人员素质测评理论与方法
- 【人教版】《劳动教育》六上 劳动项目六《制造手工肥皂》课件
- 部编版四年级语文下册期中试卷+ 答题卡(含答案)
- DB53∕T 1269-2024 改性磷石膏用于矿山废弃地生态修复回填技术规范
- 财务报表分析-第五章 营运能力分析
- mm立式矫直机辊系设计
- (教学设计)专题4 第2单元 基础课时13 羧酸的性质及应用2023-2024学年新教材高中化学选择性必修3(苏教版2019)
- 《建筑玻璃膜应用技术规程 JGJT351-2015》
- 2024年黑龙江龙东地区初中毕业学业统一考试中考物理试卷(真题+答案解析)
- 人教版音乐三年级下册第五单元 打字机 教案
评论
0/150
提交评论