2024届浙江省衢州市数学九上期末经典试题含解析_第1页
2024届浙江省衢州市数学九上期末经典试题含解析_第2页
2024届浙江省衢州市数学九上期末经典试题含解析_第3页
2024届浙江省衢州市数学九上期末经典试题含解析_第4页
2024届浙江省衢州市数学九上期末经典试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省衢州市数学九上期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某果园2017年水果产量为100吨,2019年水果产量为144吨,则该果园水果产量的年平均增长率为()A.10% B.20% C.25% D.40%2.如图,在平行四边形中,点在边上,,连接交于点,则的面积与的面积之比为()A. B. C. D.3.如图,这是一个由四个半径都为1米的圆设计而成的花坛,圆心在同一直线上,每个圆都会经过相邻圆的圆心,则这个花坛的周长(实线部分)为()A.4π米 B.π米 C.3π米 D.2π米4.如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为()A.2 B. C. D.5.如图,为的直径,为上一点,弦平分,交于点,,,则的长为()A.2.5 B.2.8 C.3 D.3.26.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位7.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖8.如图,在中,点在边上,且,,过点作,交边于点,将沿着折叠,得,与边分别交于点.若的面积为,则四边形的面积是()A. B. C. D.9.为了得到函数的图象,可以将函数的图象()A.先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度B.先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度C.先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度D.先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度10.若关于x的一元二次方程kx2-2kx+4=0有两个相等的实数根,则kA.0或4 B.4或8 C.0 D.411.如图,在中,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似,图形,使得的边长是的边长的2倍.设点的横坐标是-3,则点的横坐标是()A.2 B.3 C.4 D.512.下列事件是随机事件的是()A.三角形内角和为度 B.测量某天的最低气温,结果为C.买一张彩票,中奖 D.太阳从东方升起二、填空题(每题4分,共24分)13.如图,某河堤的横截面是梯形,,迎水面长26,且斜坡的坡比(即)为12:5,则河堤的高为__________.14.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)15.函数y=中的自变量的取值范围是____________.16.在一个不透明的袋中装有12个红球和若干个白球,它们除颜色外都相同从袋中随机摸出一个球,记下颜色后放回,并搅均,不断重复上述的试验共5000次,其中2000次摸到红球,请估计袋中大约有白球______个17.在Rt△ABC中,∠C=90°,如果cosB=,BC=4,那么AB的长为________.18.如图,角α的两边与双曲线y=(k<0,x<0)交于A、B两点,在OB上取点C,作CD⊥y轴于点D,分别交双曲线y=、射线OA于点E、F,若OA=2AF,OC=2CB,则的值为______.三、解答题(共78分)19.(8分)解方程或计算(1)解方程:3y(y-1)=2(y-1)(2)计算:sin60°cos45°+tan30°.20.(8分)如图,△ABC中,AB=8,AC=6.(1)请用尺规作图的方法在AB上找点D,使得△ACD∽△ABC(保留作图痕迹,不写作法)(2)在(1)的条件下,求AD的长21.(8分)如图,在中,,点为上一点且与不重合.,交于.(1)求证:;(2)设,求关于的函数表达式;(3)当时,直接写出_________.22.(10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD中,,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;运用:(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=.连接EG,若△EFG的面积为,求FH的长.23.(10分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.24.(10分)解方程:x2﹣4x﹣21=1.25.(12分)如图,在和中,,点为射线,的交点.(1)问题提出:如图1,若,.①与的数量关系为________;②的度数为________.(2)猜想论证:如图2,若,则(1)中的结论是否成立?请说明理由.26.小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中水温y(℃)与开机时间x(分)满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y(℃)与开机时间x(分)成反比例关系,当水温降至20C时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明上午八点将饮水机在通电开机(此时饮水机中原有水的温度为20℃后即外出散步,预计上午八点半散步回到家中,回到家时,他能喝到饮水机内不低于30℃的水吗?请说明你的理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】2019年水果产量=2017年水果产量,列出方程即可.【题目详解】解:根据题意得,解得(舍去)故答案为20%,选B.【题目点拨】本题考查了一元二次方程的应用.2、C【分析】先求出,再根据平行四边形的性质可得AB∥CD,AB=CD,从而证出△BAF∽△DEF,,然后根据相似三角形的性质即可求出结论.【题目详解】解:∵∴∴∵四边形ABCD是平行四边形∴AB∥CD,AB=CD∴△BAF∽△DEF,∴故选C.【题目点拨】此题考查的是平行四边形的性质和相似三角形的判定及性质,掌握平行四边形的性质、利用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.3、A【分析】根据弧长公式解答即可.【题目详解】解:如图所示:∵这是一个由四个半径都为1米的圆设计而成的花坛,圆心在同一直线上,每个圆都会经过相邻圆的圆心,∴OA=OC=O'A=OO'=O'C=1,∴∠AOC=120°,∠AOB=60°,∴这个花坛的周长=,故选:A.【题目点拨】本题考查了圆的弧长公式,找到弧所对圆心角度数是解题的关键4、B【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【题目详解】过P作x轴的垂线,交x轴于点A,

∵P(2,4),

∴OA=2,AP=4,.

∴∴.故选B.【题目点拨】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.5、B【分析】连接BD,CD,由勾股定理求出BD的长,再利用,得出,从而求出DE的长,最后利用即可得出答案.【题目详解】连接BD,CD∵为的直径∵弦平分即解得故选:B.【题目点拨】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.6、B【解题分析】根据“左加右减,上加下减”的原则进行解答即可:∵y=x2,∴平移过程为:先向左平移2个单位,再向下平移3个单位.故选B.7、B【分析】根据概率的求解方法逐一进行求解即可得.【题目详解】A.无论一颗质地均匀的骰子多少次,每次抛掷出5点的概率都是,故A错误;B.抛掷一枚图钉,因为图钉质地不均匀,钉尖触地和钉尖朝上的概率不相等,故B正确;C.明天降雨的概率是80%,表示明天有80%的可能性降雨,故C错误D.某种彩票中奖的概率是1%,表明中奖的概率为1%,故D错误故答案为:B.【题目点拨】本题考查了对概率定义的理解,熟练掌握是解题的关键.8、B【分析】由平行线的性质可得,,可设AH=5a,HP=3a,求出S△ADE=,由平行线的性质可得,可得S△FGM=2,再利用S四边形DEGF=S△DEM-S△FGM,即可得到答案.【题目详解】解:如图,连接AM,交DE于点H,交BC于点P,

∵DE∥BC,

∴,∴∵的面积为∴S△ADE=×32=设AH=5a,HP=3a

∵沿着折叠

∴AH=HM=5a,S△ADE=S△DEM=

∴PM=2a,

∵DE∥BC

∴S△FGM=2∴S四边形DEGF=S△DEM-S△FGM=-2=

故选:B.【题目点拨】本题考查了折叠变换,平行线的性质,相似三角形的性质,熟练运用平行线的性质是本题的关键.9、A【分析】先求出两个二次函数的顶点坐标,然后根据顶点坐标即可判断对称或平移的方式.【题目详解】的顶点坐标为的顶点坐标为∴点先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度可得到点故选A【题目点拨】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.10、D【解题分析】根据已知一元二次方程有两个相等的实数根得出k≠0,Δ=(-2k)2-4×k×4=0【题目详解】因为关于x的一元二次方程kx2-2kx+4=0有两个相等的实数根,所以k≠0,Δ=(-2k)2【题目点拨】此题考查根的判别式,解题关键在于利用判别式解答.11、B【解题分析】设点B′的横坐标为x,然后根据△A′B′C与△ABC的位似比为2列式计算即可求解.【题目详解】设点B′的横坐标为x,∵△ABC的边长放大到原来的2倍得到△A′B′C,点C的坐标是(-1,0),∴x-(-1)=2[(-1)-(-1)],即x+1=2(-1+1),解得x=1,所以点B的对应点B′的横坐标是1.故选B.【题目点拨】本题考查了位似变换,坐标与图形的性质,根据位似比列出方程是解题的关键.12、C【分析】一定发生或是不发生的事件是确定事件,可能发生也可能不发生的事件是随机事件,根据定义判断即可.【题目详解】A.该事件不可能发生,是确定事件;B.该事件不可能发生,是确定事件;C.该事件可能发生,是随机事件;D.该事件一定发生,是确定事件.故选:C.【题目点拨】此题考查事件的分类,正确理解确定事件和随机事件的区别并熟练解题是关键.二、填空题(每题4分,共24分)13、24cm【分析】根据坡比(即)为12:5,设BE=12x,AE=5x,因为AB=26cm,根据勾股定理列出方程即可求解.【题目详解】解:设BE=12x,AE=5x,∵AB=26cm,∴∴BE=2×12=24cm故答案为:24cm.【题目点拨】本题主要考查的是坡比以及勾股定理,找出图中的直角三角形在根据勾股定理列出方程即可求解.14、乙【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【题目详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15、x≠1【分析】根据分母不等于0列式计算即可得解.【题目详解】根据题意得,x-1≠0,解得:x≠1.故答案为x≠1.16、1【解题分析】根据口袋中有12个红球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.【题目详解】解:通过大量重复摸球试验后发现,摸到红球的频率是,口袋中有12个红球,设有x个白球,则,解得:,答:袋中大约有白球1个.故答案为:1.【题目点拨】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.17、6【分析】根据题意cosB=,得到AB=,代入计算即可.【题目详解】解:Rt△ABC中,∠C=90°,cosB=,可知cosB=得到AB=,又知BC=4,代入得到AB=故填6.【题目点拨】本题考查解直角三角形相关,根据锐角三角函数进行分析求解.18、【解题分析】过C,B,A,F分别作CM⊥x轴,BN⊥x轴,AG⊥x轴,FH⊥x轴,设DO为2a,分别求出C,E,F的坐标,即可求出的值.【题目详解】如图:过C,B,A,F分别作CM⊥x轴,BN⊥x轴,AG⊥x轴,FH⊥x轴,设DO为2a,则E(,2a),∵BN∥CM,∴△OCM∽△OBN,∴=,∴BN=3a,∴B(,3a),∴直线OB的解析式y=x,∴C(,2a),∵FH∥AG,∴△OAG∽△OFH,∴,∵FH=OD=2a,∴AG=a,∴A(,a),∴直线OA的解析式y=x,∴F(,2a),∴==,故答案为:【题目点拨】本题考查反比例函数图象上点的特征,相似三角形的判定,关键是能灵活运用相似三角形的判定方法.三、解答题(共78分)19、(1)y1=1,y2=;(2)【分析】(1)先移项,再用提公因式法解方程即可;(2)将三角函数的对应值代入计算即可.【题目详解】(1)3y(y-1)=2(y-1),,(3y-2)(y-1)=0,y1=1,y2=;(2)sin60°cos45°+tan30°,,=.【题目点拨】此题考查计算能力,(1)是解方程,解方程时需根据方程的特点选择适合的方法使计算简便;(2)是三角函数值的计算,熟记各角的三角函数值是解题的关键.20、(1)见图(2)AD=.【解题分析】(1)图形见详解,(2)根据相似列比例式即可求解.【题目详解】解:(1)见下图(2)∵△ACD∽△ABC,∴AC:AB=AD:AC,∵AB=8,AC=6,∴AD=.【题目点拨】本题考查了尺规作图和相似三角形的性质,中等难度,熟悉尺规作图步骤和相似三角形的性质是解题关键.21、(1)详见解析;(2);(3)1【分析】(1)先根据题意得出∠B=∠C,再根据等量代换得出∠ADB=∠DEC即可得证;(2)根据相似三角形的性质得出,将相应值代入化简即可得出答案;(3)根据相似三角形的性质得出,再根据已知即可证明AE=EC从而得出答案.【题目详解】解:(1)Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°,BC=∵∠ADE=45°,∴∠ADB+∠CDE=∠CDE+∠DEC=135°∴∠ADB=∠DEC,∴△ABD∽△DCE(2)∵△ABD∽△DCE,∴,∵BD=x,AE=y,则DC=,代入上式得:,∴,即(3),在中,【题目点拨】本题考查了相似三角形的判定及性质定理,熟练掌握定理是解题的关键.22、(1)详见解析;(2)详见解析;(3)4【分析】(1)根据“相似对角线”的定义,利用方格纸的特点可找到D点的位置.(2)通过导出对应角相等证出∽,根据四边形ABCD的“相似对角线”的定义即可得出BD是四边形ABCD的“相似对角线”.(3)根据四边形“相似对角线”的定义,得出∽,利用对应边成比例,结合三角形面积公式即可求.【题目详解】解:(1)如图1所示.(2)证明:平分,∽∴BD是四边形的“相似对角线”.(3)是四边形的“相似对角线”,三角形与三角形相似.又∽过点作垂足为则【题目点拨】本题考查相似三角形的判定与性质的综合应用及解直角三角形,对于这种新定义阅读材料题目读,懂题意是解答此题的关键.23、直线AD与⊙O相切,理由见解析【分析】先由AB是⊙O的直径可得∠ACB=90°,进而得出∠ABC+∠BAC=90°;接下来再由∠CAD=∠ABC,运用等量代换可得∠CAD+∠BAC=90°,再运用切线的判定即可求解.【题目详解】直线AD与⊙O相切.∵AB是⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.又∵∠CAD=∠ABC,∴∠CAD+∠BAC=90°.∴直线AD与⊙O相切【题目点拨】本题考查了圆周角定理,直线与圆的位置关系.半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径;经过半径外端点并且垂直于这条半径的直线是圆的切线.24、x1=7,x2=﹣2.【分析】本题考查了一元二次方程的解法,由于-21=-7×2,且-7+2=-4,所以本题可用十字相乘法分解因式求解.【题目详解】解:x2﹣4x﹣21=1,(x﹣7)(x+2)=1,x﹣7=1,x+2=1,x1=7,x2=﹣2.25、(1);;(2)成立,理由见解析【分析】(1)①依据等腰三角形的性质得到AB=AC,AD=AE,依据同角的余角相等得到∠DAB=∠CAE,然后依据“SAS”可证明△ADB≌△AEC,最后,依据全等三角形的性质可得到∠ABD=∠ACE;②由三角形内角和定理可求∠BPC的度数;(2)由30°角的性质可知,,从而可得,进而可证,由相似三角形的性质和三角形内角和即可得出结论;【题目详解】(1)①∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,∠ABC=∠ACB=45°,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论