2024届福建省莆田市秀屿区湖东中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第1页
2024届福建省莆田市秀屿区湖东中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第2页
2024届福建省莆田市秀屿区湖东中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第3页
2024届福建省莆田市秀屿区湖东中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第4页
2024届福建省莆田市秀屿区湖东中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省莆田市秀屿区湖东中学数学九年级第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,2.如图,△ABC中,点D是AB的中点,点E是AC边上的动点,若△ADE与△ABC相似,则下列结论一定成立的是()A.E为AC的中点 B.DE是中位线或AD·AC=AE·ABC.∠ADE=∠C D.DE∥BC或∠BDE+∠C=180°3.如图,各正方形的边长均为1,则四个阴影三角形中,一定相似的一对是()A.①② B.①③ C.②③ D.③④4.下列命题中,①直径是圆中最长的弦;②长度相等的两条弧是等弧;③半径相等的两个圆是等圆;④半径不是弧,半圆包括它所对的直径,其中正确的个数是()A. B. C. D.5.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V()的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将会爆炸,为了安全起见,气球的体积应()A.不小于 B.大于 C.不小于 D.小于6.已知x=5是分式方程=的解,则a的值为()A.﹣2 B.﹣4 C.2 D.47.下列图形中,中心对称图形有()A.4个 B.3个 C.2个 D.1个8.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A. B. C. D.9.如图,点A,B,C都在⊙O上,∠ABC=70°,则∠AOC的度数是()A.35° B.70° C.110° D.140°10.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则()A.a≠±1 B.a=1 C.a=﹣1 D.a=±111.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为,则根据题意可列方程为()A. B.C. D.12.如图,将绕点A按顺时针方向旋转一定角度得到,点B的对应点D恰好落在边上.若,则的长为()A.0.5 B.1.5 C. D.1二、填空题(每题4分,共24分)13.若=,则=__________.14.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.15.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为.16.在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“罗”、“山”的文字.先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是含有“美”“丽”二字的概率为_____.17.一张矩形的纸片ABCD中,AB=10,AD=8.按如图方式折,使A点刚好落在CD上。则折痕(阴影部分)面积为_________________.18.如图,是以点为圆心的圆形纸片的直径,弦于点,.将阴影部分沿着弦翻折压平,翻折后,弧对应的弧为,则点与弧所在圆的位置关系为____________.三、解答题(共78分)19.(8分)已知关于x的一元二次方程x2+(2k+1)x+k2=0有实数根.(1)求k的取值范围.(2)设方程的两个实数根分别为x1、x2,若2x1x2﹣x1﹣x2=1,求k的值.20.(8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=4,⊙O的半径为,求BC的长.21.(8分)如图,是一个锐角三角形,分别以、向外作等边三角形、,连接、交于点,连接.(1)求证:(2)求证:22.(10分)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.23.(10分)同时抛掷3枚硬币做游戏,其中1元硬币1枚,5角硬币两枚.(1)求3枚硬币同时正面朝上的概率.(2)小张、小王约定:正面朝上按面值算,背面朝上按0元算.3枚落地后,若面值和为1.5元,则小张获得1分;若面值和为1元,则小王得1分.谁先得到10分,谁获胜,请问这个游戏是否公平?并说明理由.24.(10分)如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE(1)求证:△DBE是等腰三角形(2)求证:△COE∽△CAB25.(12分)如图,已知直线AB经过点(0,4),与抛物线y=x2交于A,B两点,其中点A的横坐标是.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?26.如图,在平面直角坐标系中,的顶点坐标分别为,,.(1)将以原点为旋转中心旋转得到,画出旋转后的.(2)平移,使点的对应点坐标为,画出平移后的(3)若将绕某一点旋转可得到,请直接写出旋转中心的坐标.

参考答案一、选择题(每题4分,共48分)1、D【分析】先将方程左边提公因式x,解方程即可得答案.【题目详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【题目点拨】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.2、D【分析】如图,分两种情况分析:由△ADE与△ABC相似,得,∠ADE=∠B或∠ADE=∠C,故DE∥BC或∠BDE+∠C=180°.【题目详解】因为,△ADE与△ABC相似,所以,∠ADE=∠B或∠ADE=∠C所以,DE∥BC或∠BDE+∠C=∠BDE+∠ADE=180°故选D【题目点拨】本题考核知识点:相似性质.解题关键点:理解相似三角形性质.3、A【分析】利用勾股定理,求出四个图形中阴影三角形的边长,然后判断哪两个三角形的三边成比例即可.【题目详解】解:由图,根据勾股定理,可得出①图中阴影三角形的边长分别为:;②图中阴影三角形的边长分别为:;③图中阴影三角形的边长分别为:;④图中阴影三角形的边长分别为:;可以得出①②两个阴影三角形的边长,所以图①②两个阴影三角形相似;故答案为:A.【题目点拨】本题考查相似三角形的判定,即如果两个三角形三条边对应成比例,则这两个三角形相似;本题在做题过程中还需注意,阴影三角形的边长利用勾股定理计算,有的图形需要把小正方形补全后计算比较准确.4、C【分析】根据弦、弧、等弧的定义即可求解.【题目详解】解:①直径是圆中最长的弦,真命题;

②在等圆或同圆中,长度相等的两条弧是等弧,假命题;

③半径相等的两个圆是等圆,真命题;④半径是圆心与圆上一点之间的线段,不是弧,半圆包括它所对的直径,真命题.

故选:C.【题目点拨】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).5、C【解题分析】由题意设设,把(1.6,60)代入得到k=96,推出,当P=120时,,由此即可判断.【题目详解】因为气球内气体的气压p(kPa)是气体体积V()的反比例函数,所以可设,由题图可知,当时,,所以,所以.为了安全起见,气球内的气压应不大于120kPa,即,所以.故选C.【题目点拨】此题考查反比例函数的应用,解题关键在于把已知点代入解析式.6、C【分析】现将x=5代入分式方程,再根据解分式方程的步骤解出a即可.【题目详解】∵x=5是分式方程=的解,∴=,∴=,解得a=1.故选:C.【题目点拨】本题考查解分式方程,关键在于代入x的值,熟记分式方程的解法.7、B【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行解答.【题目详解】第一、二、三个图形是中心对称图形,第四个图形是轴对称图形,不是中心对称图形.综上所述,是中心对称图形的有3个.故答案选B.【题目点拨】本题考查了中心对称图形,解题的关键是熟练的掌握中心对称图形的定义.8、C【解题分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【题目详解】解:当时,,即S与t是二次函数关系,有最小值,开口向上,当时,,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.【题目点拨】考查动点问题的函数过图象,解答本题的关键是明确题意,利用数形结合的思想解答.9、D【分析】根据圆周角定理问题可解.【题目详解】解:∵∠ABC所对的弧是,

∠AOC所对的弧是,

∴∠AOC=2∠ABC=2×70°=140°.

故选D.【题目点拨】本题考查圆周角定理,解答关键是掌握圆周角和同弧所对的圆心角的数量关系.10、C【解题分析】根据一元一次方程的定义即可求出答案.【题目详解】由题意可知:,解得a=−1故选C.【题目点拨】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.11、B【分析】根据2019年的产量=2017年的产量×(1+年平均增长率)2,即可列出方程.【题目详解】解:根据题意可得,2018年的产量为50(1+x),

2019年的产量为50(1+x)(1+x)=50(1+x)2,

即所列的方程为:50(1+x)2=1.

故选:B.【题目点拨】此题主要考查了一元二次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程.12、D【解题分析】利用∠B的正弦值和正切值可求出BC、AB的长,根据旋转的性质可得AD=AB,可证明△ADB为等边三角形,即可求出BD的长,根据CD=BC-BD即可得答案.【题目详解】∵AC=,∠B=60°,∴sinB=,即,tan60°=,即,∴BC=2,AB=1,∵绕点A按顺时针方向旋转一定角度得到,∴AB=AD,∵∠B=60°,∴△ADB是等边三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故选D.【题目点拨】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.二、填空题(每题4分,共24分)13、【解题分析】由比例的性质即可解答此题.【题目详解】∵,∴a=b,∴=,故答案为【题目点拨】此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.14、4π【分析】直接利用弧长公式计算即可求解.【题目详解】l==4π,故答案为:4π.【题目点拨】本题考查弧长计算公式,解题的关键是掌握:弧长l=(n是弧所对应的圆心角度数)15、π.【题目详解】解:如图连接OE、OF.∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的长=.故答案为π.考点:切线的性质;平行四边形的性质;弧长的计算.16、【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球上是写有“美丽”二字的结果数,然后根据概率公式求解.【题目详解】(1)用1、2、3、4别表示美、丽、罗、山,画树形图如下:

由树形图可知,所有等可能的情况有16种,其中“1,2”出现的情况有2种,

∴P(美丽).故答案为:.【题目点拨】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17、25【分析】根据折叠利用方程求出AE的长即可【题目详解】设,则∵折叠∴∴∴∴DF=4∴解得∴故答案为25【题目点拨】本题考查了折叠与勾股定理,利用折叠再结合勾股定理计算是解题关键。18、点在圆外【分析】连接OC,作OF⊥AC于F,交弧于G,判断OF与FG的数量关系即可判断点和圆的位置关系.【题目详解】解:如图,连接OC,作OF⊥AC于F,交弧于G,∵,∴OA=OB=OC=5,AE=7,OE=2,∵,∴,∴,∵OF⊥AC,∴CF=AC,∴,∵,∴,∴,∴,∴点与弧所在圆的位置关系是点在圆外.故答案是:点在圆外.【题目点拨】本题考查了点和圆位置关系,利用垂径定理进行有关线段的计算,通过构造直角三角形是解题的关键.三、解答题(共78分)19、(1);(2)k=1【分析】(1)由△≥1,求出k的范围;(2)由根与系数的关系可知:x1+x2=﹣2k﹣1,x1x2=k2,代入等式求解即可.【题目详解】解:(1)∵一元二次方程x2+(2k+1)x+k2=1有实数根,∴△=(2k+1)2﹣4k2≥1,∴;(2)由根与系数的关系可知:x1+x2=﹣2k﹣1,x1x2=k2,∴2x1x2﹣x1﹣x2=2k2+2k+1=1,∴k=1或k=﹣1,∵;∴k=1.【题目点拨】本题考查根与系数的关系;熟练掌握一元二次方程根与系数的关系,并能用判别式判断根的存在情况是解题的关键.20、(1)证明见解析;(2)BC=1;【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【题目详解】(1)连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBO+∠OBA=90°,∵OC=OB,∴∠C=∠CBO,∴∠C+∠OBA=90°,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)∵⊙O的半径为,∴OB=,AC=2,∵OP∥BC,∴∠C=∠CBO=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=1.【题目点拨】本题考查了切线的判定与性质、圆周角定理、平行线的性质、相似三角形的判定与性质;熟练掌握圆周角定理、切线的判定是解决问题的关键.21、(1)见解析;(2)见解析【分析】(1)过A作AM⊥CD于M,AN⊥BE于N,设AB与CD相交于点G.根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,根据全等三角形的判定定理即可得△ACD≌△AEB,根据全等三角形的性质可得AM=AN,根据角平分线的判定定理即可得到∠DFA=∠AFE,再根据全等三角形的对应角相等和三角形内角和等于180°得到∠DFB=∠DAG=60°,即可得到结论;(2)如图,延长FB至K,使FK=DF,连DK,根据等边三角形的性质和全等三角形的判定和性质定理即可得到结论.【题目详解】(1)过A作AM⊥CD于M,AN⊥BE于N,设AB与CD相交于点G.∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠DAC=∠BAE=60°+∠BAC.在△ACD和△AEB中,∵,∴△ACD≌△AEB,∴CD=BE,∠ADG=∠ABF,△ADC的面积=△ABE的面积,∴CD•AM=BE•AN,∴AM=AN,∴AF是∠DFE的平分线,∴∠DFA=∠AFE.∵∠ADG=∠ABF,∠AGD=∠BGF,∴∠DFB=∠DAG=60°,∴∠GFE=120°,∴∠BFD=∠DFA=∠AFE.(2)如图,延长FB至K,使FK=DF,连接DK.∵∠DFB=60°,∴△DFK为等边三角形,∴DK=DF,∠KDF=∠K=60°,∴∠K=∠DFA=60°.∵∠ADB=60°,∴∠KDB=∠FDA.在△DBK和△DAF中,∵∠K=∠DFA,DK=DF,∠KDB=∠FDA,∴△DBK≌△DAF,∴BK=AF.∵DF=DK=FK=BK+BF,∴DF=AF+BF,又∵CD=DF+CF,∴CD=AF+BF+CF.【题目点拨】本题考查了全等三角形的判定和性质,等边三角形的判定与性质,角平分线的判定,正确的作出辅助线是解题的关键.22、(1)y=﹣+2x﹣;(2);(3)存在最大值,此时P点坐标(,).【分析】(1)将A、B两点坐标分别代入抛物线解析式,可求得待定系数a和b,即可确定抛物线解析式;(2)因为圆的切线垂直于过切点的半径,所以过A作AD⊥BC于点D,则AD为⊙A的半径,由条件可证明△ABD∽△CBO,根据抛物线解析式求出C点坐标,根据勾股定理求出BC的长,再求出AB的长,利用相似三角形的性质即两个三角形相似,对应线段成比例,可求得AD的长,即为⊙A的半径;(3)先由B,C点坐标求出直线BC解析式,然后过P作PQ∥y轴,交直线BC于点Q,交x轴于点E,因为P在抛物线上,P,Q点横坐标相同,所以可设出P、Q点的坐标,并把PQ的长度表示出来,进而表示出△PQC和△PQB的面积,两者相加就是△PBC的面积,再利用二次函数的性质讨论其最大值,容易求得P点坐标.【题目详解】解:(1)∵抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),∴把A、B两点坐标代入可得:,解得:,∴抛物线解析式为y=﹣+2x﹣;(2)过A作AD⊥BC于点D,如图1:因为圆的切线垂直于过切点的半径,所以AD为⊙A的半径,由(1)可知C(0,﹣),且A(1,0),B(5,0),∴OB=5,AB=OB﹣OA=4,OC=,在Rt△OBC中,由勾股定理可得:BC===,∵∠ADB=∠BOC=90°,∠ABD=∠CBO,∴△ABD∽△CBO,∴,即,解得AD=,即⊙A的半径为;(3)∵C(0,﹣),∴设直线BC解析式为y=kx﹣,把B点坐标(5,0)代入可求得k=,∴直线BC的解析式为y=x﹣,过P作PQ∥y轴,交直线BC于点Q,交x轴于点E,如图2,因为P在抛物线上,Q在直线BC上,P,Q两点横坐标相同,所以设P(x,﹣+2x﹣),则Q(x,x﹣),∴PQ=(﹣+2x﹣)﹣(x﹣)=﹣+x=﹣+,∴S△PBC=S△PCQ+S△PBQ=PQ•OE+PQ•BE=PQ(OE+BE)=PQ•OB=PQ=×[﹣+]=,∵<0,∴当x=时,S△PBC有最大值,把x=代入﹣+2x﹣,求出P点纵坐标为,∴△PBC的面积存在最大值,此时P点坐标(,).【题目点拨】本题考查1.二次函数的综合应用;2.切线的性质;3.相似三角形的判定和性质;4.用待定系数法确定解析式,综合性较强,利用数形结合思想解题是关键.23、(1);(2)公平,见解析【分析】(1)用列表法或树状图法表示出所有可能出现的结果,进而求出3枚硬币同时正面朝上的概率.(2)求出小张获得1分;小王得1分的概率,再判断游戏的公平性.【题目详解】解:(1)用树状图表示所有可能出现的情况如下:∴P(3枚硬币同时正面朝上)=;(2)公平,所有面值出现的情况如图所示:∵P(小张获得1分),P(小王得1分),∴P(小张获得1分)=P(小王得1分),因此对于他们来说是公平的.【题目点拨】本题考查了树状图和概率计算公式,解决本题的关键是正确理解题意,熟练掌握树状图的画法和概率的计算公式.24、(1)见解析;(2)见解析【分析】(1)连接OD,由DE是⊙O的切线,得出∠ODE=90°,∠ADO+∠BDE=90°,由∠ACB=90°,得出∠CAB+∠CBA=90°,证出∠CAB=∠ADO,得出∠BDE=∠CBA,即可得出结论;(2)证出CB是⊙O的切线,得出DE=EC,推出EC=EB,再由OA=OC,得出OE∥AB,即可得出结论.【题目详解】(1)连接OD、OE,如图所示:∵DE是⊙O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵OA=OD,∴∠CAB=∠ADO,∴∠BDE=∠CBA,∴EB=ED,∴△DBE是等腰三角形;(2)∵∠ACB=90°,AC是⊙O的直径,∴CB是⊙O的切线,∵DE是⊙O的切线,∴DE=EC,∵EB=ED,∴EC=EB,∵OA=OC,∴OE∥AB,∴△COE∽△CAB.【题目点拨】本题考查了切线的判定与性质、相似三角形的判定、等腰三角形的判定与性质、平行线的判定与性质等知识,熟练掌握切线的判定与性质是解题的关键.25、(1)直线y=x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1.【解题分析】(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论