2024届广东省广州市越秀区知用中学数学九年级第一学期期末复习检测模拟试题含解析_第1页
2024届广东省广州市越秀区知用中学数学九年级第一学期期末复习检测模拟试题含解析_第2页
2024届广东省广州市越秀区知用中学数学九年级第一学期期末复习检测模拟试题含解析_第3页
2024届广东省广州市越秀区知用中学数学九年级第一学期期末复习检测模拟试题含解析_第4页
2024届广东省广州市越秀区知用中学数学九年级第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省广州市越秀区知用中学数学九年级第一学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,正方形ABCD中,点EF分别在BC、CD上,△AEF是等边三角形,连AC交EF于G,下列结论:①∠BAE=∠DAF=15°;②AG=GC;③BE+DF=EF;④S△CEF=2S△ABE,其中正确的个数为()A.1 B.2 C.3 D.42.如图,点O是△ABC的内切圆的圆心,若∠A=80°,则∠BOC为()A.100° B.130°C.50° D.65°3.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定4.⊙O的半径为15cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=18cm,则AB和CD之间的距离是()A.21cm B.3cmC.17cm或7cm D.21cm或3cm5.若,相似比为1:2,则与的面积的比为()A.1:2 B.2:1 C.1:4 D.4:16.抛物线与y轴的交点坐标是()A.(4,0) B.(-4,0) C.(0,-4) D.(0,4)7.如图,周长为28的菱形中,对角线、交于点,为边中点,的长等于()A.3.5 B.4 C.7 D.148.下列关于一元二次方程(,是不为的常数)的根的情况判断正确的是()A.方程有两个相等的实数根 B.方程有两个不相等的实数根C.方程没有实数根 D.方程有一个实数根9.如图,△ABC中,点D为边BC的点,点E、F分别是边AB、AC上两点,且EF∥BC,若AE:EB=m,BD:DC=n,则()A.若m>1,n>1,则2S△AEF>S△ABD B.若m>1,n<1,则2S△AEF<S△ABDC.若m<1,n<1,则2S△AEF<S△ABD D.若m<1,n>1,则2S△AEF<S△ABD10.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A.2组B.3组C.4组D.5组二、填空题(每小题3分,共24分)11.已知关于x的一元二次方程x2+px-3=0的一个根为-3,则它的另一根为________.12.用配方法解方程时,可配方为,其中________.13.正六边形的边长为6,则该正六边形的面积是______________.14.二次函数y=(x﹣1)2﹣5的顶点坐标是_____.15.如图,圆锥的底面半径r为4,沿着一条母线l剪开后所得扇形的圆心角ɵ=90°,则该圆锥的母线长是_________________.16.如图,直线AB与⊙O相切于点C,点D是⊙O上的一点,且∠EDC=30°,则∠ECA的度数为_________.17.如图,C、D是AB为直径的半圆O上的点,若∠BAD=50°,则∠BCD=_____.18.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是________________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)将△ABC各顶点的横纵坐标都缩小为原来的得到△A1B1C1,请在图中画出△A1B1C1;(2)求A1C1的长.20.(6分)在Rt△ABC中,∠C=90°,a=6,b=.解这个三角形.21.(6分)如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°.求证:△ADC~△DEB.22.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)求△AOB的面积.(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.23.(8分)如图,已知AB是⊙O的直径,AC为弦,且平分∠BAD,AD⊥CD,垂足为D.(1)求证:CD是⊙O的切线;(2)若⊙O的直径为4,AD=3,试求∠BAC的度数.24.(8分)2019年6月,总书记对垃圾分类工作作出重要指示.实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.兴国县某校为培养学生垃圾分类的好习惯,在校园内摆放了几组垃圾桶,每组4个,分别是“可回收物”、“有害垃圾”、“厨余垃圾”和“其它垃圾”(如下图,分别记为A、B、C、D).小超同学由于上课没有听清楚老师的讲解,课后也没有认真学习教室里张贴的“垃圾分类常识”,对垃圾分类标准不是很清楚,于是先后将一个矿泉水瓶(简记为水瓶)和一张擦了汗的面巾纸(简记为纸巾)随机扔进了两个不同的垃圾桶。说明:矿泉水瓶属于“可回收物”,擦了汗的面巾纸属于“其它垃圾”.(1)小超将矿泉水瓶随机扔进4个垃圾桶中的某一个桶,恰好分类正确的概率是_____;(2)小超先后将一个矿泉水瓶和一张擦了汗的面巾纸随机扔进了两个不同的垃圾桶,请用画树状图或列表的方法,求出两个垃圾都分类错误的概率.25.(10分)二次函数图象是抛物线,抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹.其中定点叫抛物线的焦点,定直线叫抛物线的准线.①抛物线()的焦点为,例如,抛物线的焦点是;抛物线的焦点是___________;②将抛物线()向右平移个单位、再向上平移个单位(,),可得抛物线;因此抛物线的焦点是.例如,抛物线的焦点是;抛物线的焦点是_____________________.根据以上材料解决下列问题:(1)完成题中的填空;(2)已知二次函数的解析式为;①求其图象的焦点的坐标;②求过点且与轴平行的直线与二次函数图象交点的坐标.26.(10分)如图,在平面直角坐标系中,直线与双曲线相交于A(﹣2,a)、B两点,BC⊥x轴,垂足为C.(1)求双曲线与直线AC的解析式;(2)求△ABC的面积.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】通过条件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,用含x的式子表示的BE、EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE再通过比较大小就可以得出结论.【题目详解】①∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵△AEF等边三角形,∴AE=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴AC是EF的垂直平分线,∴AC平分∠EAF,∴∠EAC=∠FAC=×60°=30°,∵∠BAC=∠DAC=45°,∴∠BAE=∠DAF=15°,故①正确;②设EC=x,则FC=x,由勾股定理,得EF=x,CG=EF=x,AG=AEsin60°=EFsin60°=2×CGsin60°=2×CG,∴AG=CG,故②正确;③由②知:设EC=x,EF=x,AC=CG+AG=CG+CG=,∴AB==,∴BE=AB﹣CE=﹣x=,∴BE+DF=2×=(﹣1)x≠x,故③错误;④S△CEF=,S△ABE=BE•AB=,∴S△CEF=2S△ABE,故④正确,所以本题正确的个数有3个,分别是①②④,故选C.【题目点拨】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.2、B【分析】根据三角形的内切圆得出∠OBC=∠ABC,∠OCB=∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【题目详解】∵点O是△ABC的内切圆的圆心,∴∠OBC=∠ABC,∠OCB=∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故选B.【题目点拨】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.3、A【解题分析】先求出△的值,再根据一元二次方程根的情况与判别式△的关系即可得出答案.【题目详解】解:一元二次方程中,△,则原方程有两个不相等的实数根.故选:A.【题目点拨】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根4、D【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=AB=12cm,CF=CD=9cm,接着根据勾股定理,在Rt△OAE中计算出OE=9cm,在Rt△OCF中计算出OF=12cm,然后分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF-OE.【题目详解】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,

∵AB∥CD,

∴OF⊥CD,

∴AE=BE=AB=12cm,CF=DF=CD=9cm,

在Rt△OAE中,∵OA=15cm,AE=12cm,

∴OE=,

在Rt△OCF中,∵OC=15cm,CF=9cm,

∴OF=,

当圆心O在AB与CD之间时,EF=OF+OE=12+9=21cm(如图1);

当圆心O不在AB与CD之间时,EF=OF-OE=12-9=3cm(如图2);

即AB和CD之间的距离为21cm或3cm.

故选:D.【题目点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.学会运用分类讨论的思想解决数学问题.5、C【解题分析】试题分析:直接根据相似三角形面积比等于相似比平方的性质.得出结论:∵,相似比为1:2,∴与的面积的比为1:4.故选C.考点:相似三角形的性质.6、D【解题分析】试题分析:求图象与y轴的交点坐标,令x=0,求y即可.当x=0时,y=4,所以y轴的交点坐标是(0,4).故选D.考点:二次函数图象上点的坐标特征.7、A【解题分析】根据菱形的周长求出其边长,再根据菱形的性质得出对角线互相垂直,最后根据直角三角形斜边上的中线等于斜边的一半解答即可.【题目详解】∵四边形是菱形,周长为28∴AB=7,AC⊥BD∴OH=故选:A【题目点拨】本题考查的是菱形的性质及直角三角形斜边上的中线等于斜边的一半,熟练掌握菱形的性质是关键.8、B【分析】首先用表示出根的判别式,结合非负数的性质即可作出判断.【题目详解】由题可知二次项系数为,一次项系数为,常数项为,,是不为的常数,,方程有两个不相等的实数根,故选:B.【题目点拨】本题主要考查了根的判别式的知识,解答此题要掌握一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根③△<0⇔方程没有实数根.9、D【分析】根据相似三角形的判定与性质,得出,,从而建立等式关系,得出,然后再逐一分析四个选项,即可得出正确答案.【题目详解】解:∵EF∥BC,若AE:EB=m,BD:DC=n,​∴△AEF∽△ABC,∴,∴,∴,∴∴当m=1,n=1,即当E为AB中点,D为BC中点时,,A.当m>1,n>1时,S△AEF与S△ABD同时增大,则或,即2或2>,故A错误;B.当m>1,n<1,S△AEF增大而S△ABD减小,则,即2,故B错误;C.m<1,n<1,S△AEF与S△ABD同时减小,则或,即2或2<,故C错误;D.m<1,n>1,S△AEF减小而S△ABD增大,则,即2<,故D正确.故选D.【题目点拨】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的性质是解答本题的关键.10、A【解题分析】试题解析:①不相似,因为没有指明相等的角或成比例的边;②不相似,因为只有一对角相等,不符合相似三角形的判定;③相似,因为其四个角均相等,四条边都相等,符合相似的条件;④不相似,虽然其四个角均相等,因为没有指明边的情况,不符合相似的条件;⑤不相似,因为菱形的角不一定对应相等,不符合相似的条件;⑥相似,因为两正五边形的角相等,对应边成比例,符合相似的条件;所以正确的有③⑥.故选A.二、填空题(每小题3分,共24分)11、1【分析】根据根与系数的关系得出−3x=−6,求出即可.【题目详解】设方程的另一个根为x,则根据根与系数的关系得:−3x=−3,解得:x=1,故答案为:1.【题目点拨】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.12、-6【分析】把方程左边配成完全平方,与比较即可.【题目详解】,,,可配方为,.故答案为:.【题目点拨】本题考查用配方法来解一元二次方程,熟练配方是解决此题的关键.13、【分析】根据题意可知边长为6的正六边形可以分成六个边长为6的正三角形,从而计算出正六边形的面积即可.【题目详解】解:连接正六变形的中心O和两个顶点D、E,得到△ODE,因为∠DOE=360°×=60°,又因为OD=OE,所以∠ODE=∠OED=(180°-60°)÷2=60°,则三角形ODE为正三角形,∴OD=OE=DE=6,∴S△ODE=OD•OE•sin60°=×6×6×=9.正六边形的面积为6×9=54.故答案为.【题目点拨】本题考查学生对正多边形的概念掌握和计算的能力,即要熟悉正六边形的性质,也要熟悉正三角形的面积公式.14、(1,﹣5)【分析】已知解析式为抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【题目详解】解:因为y=(x﹣1)2﹣5是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(1,﹣5).故答案为:(1,﹣5).【题目点拨】本题考查了二次函数的性质,根据二次函数的顶点式找出抛物线的对称轴及顶点坐标是解题的关键.15、1【分析】由题意首先求得展开之后扇形的弧长也就是圆锥的底面周长,进一步利用弧长计算公式求得扇形的半径,即圆锥的母线l.【题目详解】解:扇形的弧长=4×2π=8π,可得=8π解得:l=1.故答案为:1.【题目点拨】本题考查圆锥的计算及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.16、30°【分析】连接OE、OC,根据圆周角定理求出∠EOC=60°,从而证得为等边三角形,再根据切线及等边三角形的性质即可求出答案.【题目详解】解:如图所示,连接OE、OC,∵∠EDC=30°,∴∠EOC=2∠EDC=60°,又∵OE=OC,∴为等边三角形,∴∠ECO=60°,∵直线AB与圆O相切于点C,∴∠ACO=90°,∴∠ECA=∠ACO-∠ECO=90°-60°=30°.故答案为:30°.【题目点拨】本题考查了圆的基本性质、圆周角定理及切线的性质,等边三角形的判定与性质,熟练掌握各性质判定定理是解题的关键.17、130°【分析】根据圆周角定理和圆内接四边形的性质得出∠BAD+∠BCD=180°,代入求出即可.【题目详解】∵C、D是AB为直径的半圆O上的点,∴∠BAD+∠BCD=180°.∵∠BAD=50°,∴∠BCD=130°.故答案为:130°.【题目点拨】本题考查了圆周角定理和圆内接四边形的性质,能根据圆内接四边形的性质得出∠BAD+∠BCD=180°是解答本题的关键.18、10%【分析】设平均每次降价的百分率为x,某种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,可列方程:60(1-x)2=48.6,由此求解即可.【题目详解】解:设平均每次降价的百分率是x,根据题意得:60(1-x)2=48.6,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次降价的百分率是10%.故答案为:10%.【题目点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.三、解答题(共66分)19、(1)作图见解析;(2)【解题分析】(1)直接利用位似图形的性质求解即可;(2)根据题意利用勾股定理解答即可.【题目详解】(1)如图所示:△A1B1C1,△A2B2C2,都是符合题意的图形;(2)A1C1的长为:.【题目点拨】本题考查了位似变换及勾股定理的知识点,解题的关键是由题意正确得出对应点的位置.20、c=12,∠A=30°,∠B=60°.【分析】先用勾股定理求出c,再根据边的比得到角的度数.【题目详解】在Rt△ABC中,∠C=90°,a=6,b=,∴,∵,,∴∠A=30°,∠B=60°.【题目点拨】此题考查解直角三角形,即求出三角形未知的边和角,用三角函数求角度时能熟记各角的三角函数值是解题的关键.21、见解析【解题分析】根据等边三角形性质得∠B=∠C,根据三角形外角性质得∠CAD=∠BDE,易证.【题目详解】证明:ABC是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C=∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴【题目点拨】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.22、(1),y=x﹣1;(2);(3)x>2或﹣1<x<0【解题分析】(1)将A坐标代入反比例解析式中求出m的值,确定出反比例解析式,再讲B坐标代入反比例解析式中求出a的值,确定出B的坐标,将A与B坐标代入一次函数求出k与b的值,即可确定出一次函数解析式;

(2)对于一次函数,令y=0求出x的值,确定出C的坐标,即OC的长,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;

(3)在图象上找出一次函数值大于反比例函数值时x的范围即可.【题目详解】(1)把A(2,1)代入y=,得:m=2,∴反比例函数的解析式为y=,把B(﹣1,n)代入y=,得:n=﹣2,即B(﹣1,﹣2),将点A(2,1)、B(﹣1,﹣2)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=x﹣1;(2)在一次函数y=x﹣1中,令y=0,得:x﹣1=0,解得:x=1,则S△AOB=×1×1+×1×2=;(3)由图象可知,当x>2或﹣1<x<0时,一次函数的值大于反比例函数的值.【题目点拨】本题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,一次函数与坐标轴的交点,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.23、(1)证明见解析;(2)30°.【解题分析】(1)连接OC,证先利用角平分线的定义和等腰三角形的性质证明∠OCA=∠DAC,从而OC∥AD,由平行线的性质可得OC⊥CD,从而得出CD是⊙O切线;(2)连接BC,证明△ACB∽△ADC,求出AC的长度,再求出∠BAC的余弦,得出∠BAC的度数.【题目详解】解:(1)连结OC.∵平分,∴∠BAC=∠DAC.又OA=OC,∴∠BAC=∠OCA,∴∠OCA=∠DAC,∴OC∥AD.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)连结BC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠ADC=90°.又∠BAC=∠DAC,∴△ACB∽△ADC.∴,,,∴AC=.在Rt△ACB中,cos∠BAC=,∴∠BAC=30°.【题目点拨】本题主要考查了等腰三角形的性质,平行线的判定与性质,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论