版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.4正态分布复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:式中的实数、是参数,分别表示总体的平均数与标准差,的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数,随机变量X满足,则称X的分布为正态分布(normaldistribution).正态分布完全由参数和确定,因此正态分布常记作.如果随机变量X服从正态分布,则记为X~.经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标X是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在1733年,法国数学家棣莫弗就用n!的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布)是由均值μ和标准差σ唯一决定的分布通过固定其中一个值,讨论均值与标准差对于正态曲线的影响若,则.利用标准正态分布表,可以求出标准正态总体在任意区间内取值的概率,即直线,与正态曲线、x轴所围成的曲边梯形的面积.3.非标准正态总体在某区间内取值的概率:可以通过转化成标准正态总体,然后查标准正态分布表即可在这里重点掌握如何转化首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1.若x~N(0,1),求(l)P(-2.32<x<1.2);(2)P(x>2).解:(1)P(-2.32<x<1.2)=F(1.2)-F(-2.32)=F(1.2)-[1-F(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P(x>2)=1-P(x<2)=1-F(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求(2)在N(μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ)解:(1)==Φ(1)=0.8413(2)F(μ+σ)==Φ(1)=0.8413F(μ-σ)==Φ(-1)=1-Φ(1)=1-0.8413=0.1587F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体取值的概率:在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7%因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是,它是偶函数,说明μ=0,的最大值为=,所以σ=1,这个正态分布就是标准正态分布教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布2.正态分布是可以用函数形式来表述的其密度函数可写成:,(σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N(0,1),其他的正态分布都可以通过转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为,x∈(-∞,+∞),从而使正态分布的研究得以简化。结合正态曲线的图形特征,归纳正态曲线的性质正态曲线的作图较难,教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质。附
表附表1.标准正态分布表x0.000.010.020.030.040.050.060.070.080.090.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.52.62.72.82.90.50000.53980.57930.61790.65540.69150.72570.75800.78810.81590.84130.86430.88490.90320.91920.93320.94520.95540.96410.97130.97720.98210.98610.98930.99180.99380.99530.99650.99740.99810.50400.54380.58320.62170.65910.69500.72910.76110.79100.81860.84380.86650.88690.90490.92070.93450.94630.95640.96480.97190.97780.98260.98640.98960.99200.99400.99550.99660.99750.99820.50800.54780.58710.62550.66280.69850.73240.76420.79390.82120.84610.86860.88880.90660.92220.93570.94740.95730.96560.97260.97830.98300.98680.98980.99220.99410.99560.99670.99760.99820.51200.55170.59100.62930.66640.70190.73570.76730.79670.82380.84850.87080.89070.90820.92360.93700.94840.95820.96640.97320.97880.98340.98710.99010.99250.99430.99570.99680.99770.99830.51600.55570.59480.63310.67000.70540.73890.77030.79950.82640.85080.87290.89250.90990.92510.93820.94950.95910.96720.97380.97930.98380.98740.99040.99270.99450.99590.99690.99770.99840.51990.55960.59870.63680.67360.70880.74220.77340.80230.82890.85310.87490.89440.91150.92650.93940.95050.95990.96780.97440.97980.98420.98780.99060.99290.99460.99600.99700.99780.99840.52390.56360.60260.64040.67720.71230.74540.77640.80510.83550.85540.87700.89620.91310.92790.94060.95150.96080.96860.97500.98030.98460.98810.99090.99310.99480.99610.99710.99790.99850.52790.56750.60640.64430.68080.71570.74860.77940.80780.83400.85770.87900.89800.91470.92920.94180.95250.96160.96930.97560.98080.98500.98840.99110.99320.99490.99620.99720.99790.99850.53190.57140.61030.64800.68440.71900.75170.78230.81060.83650.85990.88100.89970.91620.93060.94300.95350.96250.97000.97620.98120.98540.98870.99130.99340.99510.99630.99730.99800.99860.53590.57530.61410.65170.68790.72240.75490.78520.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能交通系统代理服务合同4篇
- 2025年度智能铝板装配一体化工程承包合同4篇
- 2025年度智慧城市建设项目承包经营合同范本8篇
- 2025年度水电工程水土保持与生态修复承包合同集锦4篇
- 2025年度体育场馆设施升级改造劳务分包合同3篇
- 2024年精简版房地产销售协议纲要版
- 2025年度特种车辆租赁与维护服务协议3篇
- 2025年度文化创意产业园区建设承包借款合同4篇
- 2025年度智能路灯与充电桩一体化安装服务合同3篇
- 2024艺人经纪合同纠纷案例
- 常用静脉药物溶媒的选择
- 2023-2024学年度人教版一年级语文上册寒假作业
- 当代西方文学理论知到智慧树章节测试课后答案2024年秋武汉科技大学
- 2024年预制混凝土制品购销协议3篇
- 2024-2030年中国高端私人会所市场竞争格局及投资经营管理分析报告
- GA/T 1003-2024银行自助服务亭技术规范
- GB/T 18488-2024电动汽车用驱动电机系统
- 门诊特定病种待遇认定申请表
- 混合离子交换器使用说明书正本
- 工伤保险待遇及案例分析PPT课件
- 自控工程识图
评论
0/150
提交评论