版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省大庆市龙凤区第五十七中学数学九上期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若a、b、c、d是成比例线段,其中a=5cm,b=2.5cm,c=10cm,则线段d的长为()A.2cm B.4cm C.5cm D.6cm2.如图,的半径为2,弦,点P为优弧AB上一动点,,交直线PB于点C,则的最大面积是
A. B.1 C.2 D.3.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2 B.cm2 C.cm2 D.cm24.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小 B.不可能摸出白球C.一定能摸出红球 D.摸出红球的可能性最大5.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出1个球,恰好是红球的概率为()A. B. C. D.6.如图,将图形用放大镜放大,这种图形的变化属于()A.平移 B.相似 C.旋转 D.对称7.从这九个自然数中任取一个,是的倍数的概率是().A. B. C. D.8.如图所示,几何体的左视图为()A. B. C. D.9.如图,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.10.在下列各式中,运算结果正确的是()A.x2+x2=x4 B.x﹣2x=﹣xC.x2•x3=x6 D.(x﹣1)2=x2﹣111.如图,圆锥的底面半径OB=6cm,高OC=8cm.则这个圆锥的侧面积是()A.30cm2 B.30πcm2 C.60πcm2 D.120cm212.如图,在△ABC中,AB=6,AC=8,BC=9,将△ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C. D.二、填空题(每题4分,共24分)13.的半径为,、是的两条弦,.,,则和之间的距离为______14.如图,△ABC是边长为2的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作;取中点,作∥,∥,得到四边形,它的面积记作.照此规律作下去,则=____________________.15.如图,在中,,若,则的值为_________16.方程(x+5)2=4的两个根分别为_____.17.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为______米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)18.已知二次函数y=x2﹣4x+3,当a≤x≤a+5时,函数y的最小值为﹣1,则a的取值范围是_______.三、解答题(共78分)19.(8分)平安超市准备进一批书包,每个进价为元.经市场调查发现,售价为元时可售出个;售价每增加元,销售量将减少个.超市若准备获得利润元,并且使进货量较少,则每个应定价为多少20.(8分)已知正比例函数的图象与反比例函数的图象交于一点,且点的横坐标为1.(1)求反比例函数的解析式;(2)当时,求反比例函数的取值范围21.(8分)已知是一张直角三角形纸片,其中,,小亮将它绕点逆时针旋转后得到,交直线于点.(1)如图1,当时,所在直线与线段有怎样的位置关系?请说明理由.(2)如图2,当,求为等腰三角形时的度数.22.(10分)如图,内接于,是的直径,是上一点,弦交于点,弦于点,连接,,且.(1)求证:;(2)若,,求的长.23.(10分)五一期间,小红和爸爸妈妈去开元寺参观,对东西塔这对中国现存最高也是最大的石塔赞叹不已,也对石塔的高度产生了浓厚的兴趣.小红进行了以下的测量:她到与西塔距离27米的一栋大楼处,在楼底A处测得塔顶B的仰角为60°,再到楼顶C处测得塔顶B的仰角为30°.那么你能帮小红计算西塔BD和大楼AC的高度吗?24.(10分)计算:25.(12分)已知:如图,在平行四边形ABCD中,过点C分别作AD、AB的垂线,交边AD、AB延长线于点E、F.(1)求证:;(2)联结AC,如果,求证:.26.解答下列各题:(1)计算:2cos31°﹣tan45°﹣;(2)解方程:x2﹣11x+9=1.
参考答案一、选择题(每题4分,共48分)1、C【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【题目详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=5cm,b=2.5cm,c=10cm,解得:d=5.故线段d的长为5cm.故选:C.【题目点拨】本题主要考查成比例线段,解题突破口是根据定义ad=cb,将a,b及c的值代入计算.2、B【分析】连接OA、OB,如图1,由可判断为等边三角形,则,根据圆周角定理得,由于,所以,因为,则要使的最大面积,点C到AB的距离要最大;由,可根据圆周角定理判断点C在上,如图2,于是当点C在半圆的中点时,点C到AB的距离最大,此时为等腰直角三角形,从而得到的最大面积.【题目详解】解:连接OA、OB,如图1,,,为等边三角形,,,,要使的最大面积,则点C到AB的距离最大,作的外接圆D,如图2,连接CD,,点C在上,AB是的直径,当点C半圆的中点时,点C到AB的距离最大,此时等腰直角三角形,,,ABCD,的最大面积为1.故选B.【题目点拨】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.3、C【解题分析】试题解析:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6-2x,∴纸盒侧面积=3x(6-2x)=-6x2+18x,=-6(x-)2+,∴当x=时,纸盒侧面积最大为.故选C.考点:1.二次函数的应用;2.展开图折叠成几何体;3.等边三角形的性质.4、D【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【题目详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,
∴摸出黑球的概率是,
摸出白球的概率是,
摸出红球的概率是,
∵<<,
∴从中任意摸出1个球,摸出红球的可能性最大;
故选:D.【题目点拨】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.5、B【分析】直接利用概率公式求解;【题目详解】解:从袋中摸出一个球是红球的概率;故选B.【题目点拨】考查了概率的公式,解题的关键是牢记概率的的求法.6、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【题目详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【题目点拨】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.7、B【解题分析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵1~9这九个自然数中,是偶数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是偶数的概率是:.故选B.8、A【分析】根据从左边看得到的图形是左视图,可得答案.【题目详解】解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形故选:A.【题目点拨】本题考查简单组合体的三视图,难度不大.9、A【解题分析】直接利用锐角三角函数关系得出sinB的值.【题目详解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故选A.【题目点拨】此题主要考查了锐角三角函数关系,正确把握定义是解题关键.10、B【分析】根据合并同类项、完全平方公式及同底数幂的乘法法则进行各选项的判断即可.【题目详解】解:A、x2+x2=2x2,故本选项错误;B、x﹣2x=﹣x,故本选项正确;C、x2•x3=x5,故本选项错误;D、(x﹣1)2=x2﹣2x+1,故本选项错误.故选B.【题目点拨】本题主要考查了合并同类项、完全平方公式及同底数幂的乘法运算等,掌握运算法则是解题的关键.11、C【题目详解】解:由勾股定理计算出圆锥的母线长=,圆锥漏斗的侧面积=.故选C.考点:圆锥的计算12、B【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【题目详解】A、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;B、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;故选:B.【题目点拨】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.二、填空题(每题4分,共24分)13、7cm或17cm【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=12,CF=5,然后根据勾股定理,在Rt△OAE中计算出OE=5,在Rt△OCF中计算出OF=12,再分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF−OE.【题目详解】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE=AB=12,CF=DF=CD=5,在Rt△OAE中,∵OA=13,AE=12,∴OE=,在Rt△OCF中,∵OC=13,CF=5,∴OF=,当圆心O在AB与CD之间时,EF=OF+OE=12+5=17;当圆心O不在AB与CD之间时,EF=OF−OE=12−5=7;即AB和CD之间的距离为7cm或17cm.故答案为:7cm或17cm.【题目点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和分类讨论的数学思想.14、【分析】先求出△ABC的面积,再根据中位线性质求出S1,同理求出S2,以此类推,找出规律即可得出S2019的值.【题目详解】∵△ABC是边长为2的等边三角形,∴△ABC的高=∴S△ABC=,∵E是BC边的中点,ED∥AB,∴ED是△ABC的中位线,∴ED=AB∴S△CDE=S△ABC,同理可得S△BEF=S△ABC∴S1=S△ABC==,同理可求S2=S△BEF=S△ABC==,以此类推,Sn=·S△ABC=∴S2019=.【题目点拨】本题考查中位线的性质和相似多边形的性质,熟练运用性质计算出S1和S2,然后找出规律是解题的关键.15、【分析】根据相似三角形的性质,得出,将AC、AB的值代入即可得出答案.【题目详解】即DC=故答案为:.【题目点拨】本题考查了相似三角形的性质,熟练掌握性质定理是解题的关键.16、x1=﹣7,x2=﹣3【分析】直接开平方法解一元二次方程即可.【题目详解】解:∵(x+5)2=4,∴x+5=±2,∴x=﹣3或x=﹣7,故答案为:x1=﹣7,x2=﹣3【题目点拨】本题主要考查一元二次方程的解法中的直接开平方法,要求理解直接开平方法的适用类型,以及能够针对不同类型的题选用合适的方法进行计算.17、6.2【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【题目详解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为6.2.【题目点拨】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.18、﹣3≤a≤1【分析】求得对称轴,然后分三种情况讨论即可求得.【题目详解】解:∵二次函数y=x1﹣4x+3=(x﹣1)1﹣1,∴对称轴为直线x=1,当a<1<a+5时,则在a≤x≤a+5范围内,x=1时有最小值﹣1,当a≥1时,则在a≤x≤a+5范围内,x=a时有最小值﹣1,∴a1﹣4a+3=﹣1,解得a=1,当a+5≤1时,则在a≤x≤a+5范围内,x=a+5时有最小值﹣1,∴(a+5)1﹣4(a+5)+3=﹣1,解得a=﹣3,∴a的取值范围是﹣3≤a≤1,故答案为:﹣3≤a≤1.【题目点拨】本题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.三、解答题(共78分)19、60元【分析】设定价为x元,则利用单个利润×能卖出的书包个数即为利润6000元,列写方程并求解即可.【题目详解】解:设定价为x元,根据题意得(x-40)[400-10(x-50)]=6000-130x+4200=0解得:=60,=70根据题意,进货量要少,所以=60不合题意,舍去.答:售价应定为70元.【题目点拨】本题考查一元二次方程中利润问题的应用,注意最后的结果有两解,但根据题意需要舍去一个答案.20、(1);(2).【分析】(1)根据M点的横坐标为1,求出k的值,得到反比例函数的解析式;(2)求出x=2,x=5时y的取值,再根据反比例函数的增减性求出y的取值范围.【题目详解】(1)正比例函数的图象与反比例函数的图象交于一点,且点的横坐标为.,,反比例函数的解析式为;(2)在反比例函数中,当,当,在反比例函数中,,当时,随的增大而减小,当时,反比例函数的取值范围为.【题目点拨】此题考查了三个方面:(1)函数图象上点的坐标特征;(2)用待定系数法求函数解析式;(3)反比例函数的增减性.21、(1)BD与FM互相垂直,理由见解析;(2)β的度数为30°或75°或120°.【分析】(1)由题意设直线BD与FM相交于点N,即可根据旋转的性质判断直线BD与线段MF垂直;(2)根据旋转的性质得∠MAD=β,分类讨论:当KA=KD时,根据等腰三角形的性质得∠KAD=∠D=30°,即β=30°;当DK=DA时,根据等腰三角形的性质得∠DKA=∠DAK,然后根据三角形内角和可计算出∠DAK=75°,即β=75°;当AK=AD时,根据等腰三角形的性质得∠AKD=∠D=30°,然后根据三角形内角和可计算出∠KAD=120°,即β=120°.【题目详解】解:(1)BD与FM互相垂直,理由如下设此时直线BD与FM相交于点N∵∠DAB=90°,∠D=30°∴∠ABD=90°-∠D=60°,∴∠NBM=∠ABD=60°由旋转的性质得△ADB≌△AMF,∴∠D=∠M=30°∴∠MNB=180°-∠M-∠NBM=180°-30°-60°=90°∴BD与FM互相垂直(2)当KA=KD时,则∠KAD=∠D=30°,即β=30°;当DK=DA时,则∠DKA=∠DAK,∵∠D=30°,∴∠DAK=(180°﹣30°)÷2=75°,即β=75°;当AK=AD时,则∠AKD=∠D=30°,∴∠KAD=180°﹣30°﹣30°=120°,即β=120°,综上所述,β的度数为30°或75°或120°.【题目点拨】本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.应用分类讨论思想和等腰三角形的性质是解决问题的关键.22、(1)详见解析;(2)【分析】(1)证法一:连接,利用圆周角定理得到,从而证明,然后利用同弧所对的圆周角相等及三角形外角的性质得到,从而使问题得解;证法二:连接,,由圆周角定理得到,从而判定,得到,然后利用圆内接四边形对角互补可得,从而求得,使问题得解;(2)首先利用勾股定理和三角形面积求得AG的长,解法一:过点作于点,利用勾股定理求GH,CH,CD的长;解法二:过点作于点,利用AA定理判定,然后根据相似三角形的性质列比例式求解.【题目详解】(1)证法一:连接.∵为的直径,∴,∴∵,∴∴∴.∵∴∵,∴∴.证法二:连接,.∵为的直径,∴∵∴∴,∴∴∵∴∵∴∴∴∵四边形内接于,∴∴∴∴.(2)解:在中,,,,根据勾股定理得.连接,∵为的直径,∴∴∴∵∴∵∴∴∴四边形是平行四边形.∴.在中,,∴解法一:过点作于点∴在中,,∴在中,∴在中,∴解法二:过点作于点∴∵∴∵∴四边形为矩形∴.∵四边形为平行四边形,∴∴.∵,∴∴即∴【题目点拨】本题考查圆的综合知识,相似三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 翻译兼职合同
- 简式房屋买卖定金合同范本
- 详见建设工程施工合同GF
- 红酒运输资质转让合同范本
- 车辆货物运输合同
- 宅基地转让协议合同书
- 外卖订单配送承包合同
- 正交薄壁孔音叉陀螺的设计和性能研究
- 极区弱观测环境下的SINS-DVL-GNSS组合导航算法研究
- 2025年南宁货运从业资格证试题答题APP
- JT-T-496-2018公路地下通信管道高密度聚乙烯硅芯塑料管
- 食材配送投标方案技术标
- 再见深海合唱简谱【珠海童年树合唱团】
- 《聚焦客户创造价值》课件
- PTW-UNIDOS-E-放射剂量仪中文说明书
- 保险学(第五版)课件全套 魏华林 第0-18章 绪论、风险与保险- 保险市场监管、附章:社会保险
- 许小年:浅析日本失去的30年-兼评“资产负债表衰退”
- 典范英语2b课文电子书
- 17~18世纪意大利歌剧探析
- β内酰胺类抗生素与合理用药
- 何以中国:公元前2000年的中原图景
评论
0/150
提交评论