把握初中数学课标的新变化_第1页
把握初中数学课标的新变化_第2页
把握初中数学课标的新变化_第3页
把握初中数学课标的新变化_第4页
把握初中数学课标的新变化_第5页
已阅读5页,还剩127页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

义务教育数学课程标准研修与解析

一、如何正确理解课程标准的变化二、课程标准修订的关注点三、数学课标的新变化

一、如何正确理解课程标准的变化如何整体把握课程标准课程标准坚持了什么课程标准不变的是什么课程标准变化的是什么修订的总体思路巩固和发展改革成果,坚持以人为本教育理念以及改革的目标和方向,全面吸收课程改革的基本经验和成功做法深入分析并积极回应课改实验中发现的问题,有针对性地进行完善继续坚持“三个面向”的精神,以前瞻性的眼光积极应对未来的挑战,进行与时俱进的更新和发展

课程标准与课堂教学的关系

——课程标准作为课程的顶层设计,它与一线的课堂教学有什么样的关系呢?

——课程标准的价值取向、基本理念、目标要求及内容标准应该对教师的教学产生重要影响,并成为教师课堂教学的基本依据。理想的课程制定的课程实施的课程获得的课程——变异?衰减?落差?拓展?课程方案、标准学校实施、课堂教学课程标准与教学的关系——教育目标的

层级性及教学内容的规定性一级

教育目的二级

课程目标三级

教学目标教育目标的层级性课程标准内容标准教学内容教学内容的规定性教材搞好课堂教学应该深入学习、研究数学课程标准二、课标修订最关注的是什么?

此次课标修订特别关注三个方面要求:

时代发展的要求

数学学科的要求

课堂教学的要求注意体现时代发展

对数学课程的如下要求:课程改革的核心是人才培养模式变化要加强对学生创新精神和实践能力的培养要以课程为载体实实在在推进素质教育要体现教育的均衡、公平,要为所有学生提供良好的教育要体现义务教育课程的基本特性:普及性、基础性、发展性如何使课程目标

体现创新意识培养的要求?基于上述要求思考如何对课程目标做修改,使数学课程目标能更好地适应时代对教育的要求

——创新意识与实践能力培养应注意处理好几个基本关系:

注意用科学、辩证的态度处理好数学课程内容及教学中的一些基本关系。如:

重视过程与关注结果

教师讲授与学生自主

面向全体与因材施教

生活化情境化与知识系统性

此外,还有直观形象与抽象思维、合情推理与演绎推理等的关系。内容的主线、课程的聚焦点如何清晰地体现数学课程的核心?抓住课程内容的主线?

——从6个关键词到10个核心概念关注课堂—实施的数学课程课改以来数学课堂发生了那些变化?那些该改变?那些该继承?那些该倡导?什么是数学课堂最应关注的事?2011年版课标的主要特征一是坚持面向每一个学生,促进学生的全面发展的育人理念二是具有显著的中国特色:重视双基,从双基到四基;正确的世界观价值观人生观渗透教育;充分反映中国传统文化和现代成就三是突出以学生学习为核心,突出了对创新精神和实践能力的培养,加强了教学观念的转变和对教学行为的指导四是新课程理念既立足中国国情又具有开阔的国际视野三、数学课程标准有哪些新变化?

数学课标修订的主要方面:

1.关于基本理念2.关于设计思路3.关于课程目标4.关于课程内容5.关于课程实施

1.关于基本理念的修改(在前言中增加了课程性质的描述、修改、丰富了基本理念的一些提法)《前言》增加了对数学课程性质的表述数学课程的性质表述为,“义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。义务教育阶段的数学课程能为学生未来生活、工作和学习奠定重要的基础。数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面得到发展。”义务教育阶段数学课程本质属性事实上,义务教育阶段数学课程这些本应被“突出体现”的属性有被弱化(或“异化”)的倾向。在相当大范围,义务教育阶段的数学课程从一开始就被导入应试升学的轨道,“突出体现”的就是竞争性、区分性和筛选性,这给学生发展带来诸多不利影响。因此,《标准》对义务教育阶段数学课程本质属性的强调颇有“正本清源”之意。基本理念反映出我们对数学、数学课程、数学教学以及评价等方面应具有的基本认识和观念、态度,它是制定和实施数学课程的指导思想。《标准》中的每一部份内容都要贯穿基本理念的思想和要求。同时,教师作为课程的实施者,更应自觉树立起正确的数学观、数学课程观、数学教学观、评价观等数学教育观念,并用以指导自己的教学实践活动。什么是课程的基本理念?

关于基本理念的修改原课标:

数学课程数学数学学习数学教学评价信息技术修改后:

数学课程课程内容

教学活动学习评价信息技术关于数学观

——如何认识数学原课标:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程新课标:数学是研究数量关系和空间形式的科学新课标:

——揭示了作为一门科学的数学所

表现出的文化特征及应有价值数学是研究数量关系和空间形式的科学。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具

……数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养

要发挥数学在培养人的(理性)思维能力和创新能力方面的不可替代的作用

一种观点:两种表述结合起来更好通过静态表述,揭示数学的学科内涵是一种传统规范,也与高中课标协调将数学视为一种活动、一种过程,今天来看也是很主流的数学哲学观,动态表述能很好支撑注重活动过程的数学新课堂静态与动态结合,有利于辩证看待数学的本质,树立正确的数学观和数学教学观

体现数学课程核心理念的三句话:人人学有价值的数学人人都能获得必需的数学不同的人在数学上得到不同的发展人人都能获得良好的数学教育不同的人在数学上得到不同的发展

树立正确的课程观

关于“人人都能获得良好的数学教育”

与过去的提法相比:

出发点不变(人人、不同的人);

有更深的意义和更广的内涵;

落脚点是数学教育而不是数学内容;

体现了更强的时代精神和要求(公

平的、优质的、均衡的、和谐的、可持

续发展的教育)。

良好的数学教育需要

在各个维度上体现提出“良好的数学教育”需要我们重新审视数学课程的目标、内容,也需要我们在课堂教学实施中寻找切入点!

我们需要什么

样的数学教学?

教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。

数学教学活动的本质是什么?树立正确的数学教学观什么是数学课堂教

学中最需要做的事?数学教学活动,特别是课堂教学应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。

改变人才培养模式

要从这些方面入手!原课标:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”

学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等都是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。原课标:教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。原课标:“对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平。更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。”

应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。树立正确的评价观

如何看待信息技术的运用?数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式

2.关于设计思路的修改学段划分保持不变对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词对四个学习领域的名称作适当调整对课程内容中的若干核心概念作适当调整,对其意义作更明确的阐释核心概念课程目标的行为动词及水平:《标准》使用“了解、理解、掌握、运用”等术语表述学习活动结果目标的不同水平,使用“经历、体验、探索”等术语表述学习活动过程目标的不同程度。这些词的基本含义如下。了解:从具体事例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象。理解:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系。掌握:在理解的基础上,把对象用于新的情境。运用:综合使用已掌握的对象,选择或创造适当的方法解决问题。经历:在特定的数学活动中,获得一些感性认识。体验:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验。探索:独立或与他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。

在标准中,使用了一些词,表述与上述术语同等水平的要求程度。这些词与上述术语之间的关系如下:(1)了解,同类词:知道,初步认识;(2)理解,同类词:认识,会;(3)掌握,同类词:能。(4)运用,同类词:证明。(5)经历,同类词:感受、尝试。(6)体验,同类词:体会。对四个学习领域名称的修改:

——总称呼改为课程内容的四个部分原课标:数与代数空间与图形统计与概率实践与综合应用修改后:数与代数图形与几何统计与概率综合与实践关于10个核心概念的分析

——原课标也称为“关键词”原课标:数感符号感空间观念(6个)统计观念应用意识推理能力修改后:数感符号意识运算能力(10个)模型思想空间观念几何直观推理能力数据分析观念应用意识核心概念有何意义?

首先,《标准》将这些核心概念放在课程内容设计栏目下提出,是想表明,这些概念不是设计者超乎于数学课程内容之上外加的,而是实实在在蕴涵于具体的课程内容之中的。从这一意义上看,核心概念往往是一类课程内容的核心或主线,它有利于我们体会内容的本质,把握课程内容的线索,抓住教学中的关键。第二,这些核心概念都是数学课程的目标点,也应该成为数学课堂教学的目标,仅以“数学思考”和“问题解决”部分的目标设定来看,《标准》就提出了:“建立数感、符号意识和空间观念,初步形成几何直观和运算能力”;“发展数据分析观念,感受随机现象”;“发展合情推理和演绎推理能力”;“增强应用意识,提高实践能力”;“体验解决问题方法的多样性,发展创新意识”。这些目标表述几乎涵盖了所有的核心概念。第三,深入一步讲,很多核心概念都体现着数学的基本思想

。数学基本思想集中反映为数学抽象、数学推理和数学模型思想。比如,与“数与代数”部分内容直接关联的数感、符号意识、运算能力、推理能力和模型思想等核心概念就不同程度的直接体现了抽象、推理和模型的基本思想要求。这启示我们,核心概念的教学要更关注其数学思想本质。第四,从这10个名词的指称来看,它们体现的都是学习主体——学生的特征,涉及的是学生在数学学习中应该建立和培养的关于数学的感悟、观念、意识、思想、能力等,因此,可以认为,它们是学生在义务教育阶段数学课程中最应培养的数学素养,是促进学生发展的重要方面。所以,把握好这些核心概念无论对于教师教学和学生学习都是极为重要的。核心概念之一:数感

——存在数感吗?修订后《标准》关于数感的提法《标准》的提法是:“数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。”将数感表述为“感悟”原来,对数感内涵的认识较多强调其直觉、感知、潜意识、经验等方面,在教学中常常感到“虚”

,找不到教学支点。

将数感表述为“感悟”不仅使这一概念有了较为明晰的界定,也使得这一概念有了更实在的意义,有利于一线教师的理解和把握。它揭示了这一概念的两重属性:既有“感”,如感知,又有“悟”,如悟性、领悟。感悟是既通过肢体又通过大脑,因此,既有感知的成分又有思维的成分《标准》将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果估计,这主要是基于义务教育阶段数学课程内容的范围并根据学生的实际所作出的要求,这有利于教师在教学中更好地把握数感培养的几条主线。

核心概念之二:符号意识

(1)何为符号意识?所谓符号就是针对具体事物对象而抽象概括出来的一种简略的记号或代号。数字、字母、图形、关系式等等构成了数学的符号系统符号意识(Symbolsense)是学习者在感知、认识、运用数学符号方面所作出的一种主动性反应,它也是一种积极的心理倾向。符号感(SymbolSense)

为何改为符号意识?英文单词一样,但改动后中文意义有所不同符号感主要的不是潜意识、直觉符号感最重要的内涵是运用符号进行数学思考和表达,进行数学活动,这是一个“意识”问题,而不是“感”的问题(2)符号意识的含义《标准》对符号意识的表述有这样几层意思值得我们体会:其一,能够理解并且运用符号表示数、数量关系和变化规律。即对数学符号不仅要“懂”,还要会“用”符号“操作”其二,知道使用符号可以进行运算和推理,得到的结论具有一般性。这一要求的核心是基于运算和推理的符号“操作”意识。这涉及到的类型较多,如对具体问题的符号表示、变量替换、关系转换、等价推演、模型抽象及模型解决等等符号表达与符号思考其三,使学生理解符号的使用是数学表达和进行数学思考的重要形式。这又引出了两个除符号理解和操作之外的要求,即符号的表达与思考。概括起来,符号意识的要求就具体体现于符号理解、符号操作、符号表达、符号思考四个维度。核心概念之三:空间观念

(1)空间观念的含义空间观念是指对物体及其几何图形的形状、大小、位置关系及其变化建立起来的一种感知和认识,空间想象是建立空间观念的重要途径空间观念也是创新精神所需的基本要素,没有空间观念和空间想象力,几乎很难谈发明与创造

(2)《标准》中空间

观念所提出的要求《标准》从四个方面提出了要求:根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。核心概念之四:几何直观

——此次新增的核心概念(1)对几何直观的认识顾名思义,几何直观所指有两点:一是几何,在这里几何是指图形;一是直观,这里的直观不仅仅是指直接看到的东西(直接看到的是一个层次),更重要的是依托现在看到的东西、以前看到的东西进行思考、想象,综合起来几何直观就是依托、利用图形进行数学的思考、想象。它在本质上是一种通过图形所展开的想象能力。希尔伯特(Hilbert)在其名著《直观几何》一书中指出,图形可以帮助我们发现、描述研究的问题;可以帮助我们寻求解决问题的思路;可以帮助我们理解和记忆得到的结果。几何直观在研究、学习数学中的价值由此可见一般。(2)《标准》中几何直观的含义

《标准》指出:“几何直观是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。”它表明:今后数学课程中有两件事需要刻意去做,即针对较抽象的数学对象的“图形表示”和“图形分析”。前者指教学中要培养学生通过画图来表达数学问题的习惯,能画图时尽量画;后者指引导学生借助图形将相对抽象的、复杂的数学关系直观、清晰地展示出来,通过对图形的分析思考进而寻求解决问题的思路。(3)几何直观的培养使学生养成画图习惯,鼓励用图形表达问题可以通过多种途径和方式使学生真正体会到画图对理解概念、寻求解题思路上带来的便利。在教学中应有这样的导向:能画图时尽量画,其实质是将相对抽象的思考对象“图形化”,尽量把问题、计算、证明等数学的过程变得直观

学会从“数”与“形”两个角度认识数学

数形结合首先是对知识、技能的贯通式认识和理解。以后逐渐发展成一种对数与形之间的化归与转化的意识,这种对数学的认识和运用的能力,应该是形成正确的数学态度所必需要求的。

用“图形法”

解决问题

掌握、运用一些基本图形解决问题

把让学生掌握一些重要的图形作为教学任务,贯穿在义务教育阶段数学教学、学习的始终。例如,除了前面指出的图形,还有数轴,方格纸,

直角坐标系等等。在教学中要有意识地强化对基本图形的运用,不断地运用这些基本图形去发现、描述问题,理解、记忆结果,这应该成为教学中关注的目标。核心概念之五:数据分析观念

——由统计观念改为数据分析观念

原课标中的“统计观念”,强调的是从统计的角度思考问题,认识统计对决策的作用,能对数据处理的结果进行合理的质疑等要求。此次将其改为“数据分析观念”,就是希望改变过去这一概念含义较“泛”,体现统计与概率的本质意义不够鲜明的弱点,而将该部分内容聚焦于“数据分析”。

(1)数据分析观念的含义

数据分析观念是学生在有关数据的活动过程中建立起来的对数据的某种“领悟”、由数据去作出推测的意识、以及对于其独特的思维方法和应用价值的体会和认识。一是过程性(或活动性)要求:让学生经历调查研究,收集、处理数据的过程,通过数据分析作出判断,并体会数据中蕴涵着信息二是方法性要求:了解对于同样的数据可以有多种分析方法,需要根据问题背景选择合适的数据分析方法三是体验性要求:通过数据分析体验随机性(2)数据分析观念的要求:核心概念之六:运算能力

——此次增加的核心概念

运算是数学的重要内容,在义务教育阶段的数学课程的各个学段中,运算都占有很大的比重。学生在学习数学的过程中,要花费较多的时间和精力,学习和掌握关于各种运算的知识及技能,并发展运算能力。

(1)标准对运算能力的要求《标准》指出:运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。(2)对运算能力的认识运算的正确、有据、合理、简洁是运算能力的主要特征。运算能力并非一种单一的、孤立的数学能力,而是运算技能与逻辑思维等的有机整合。在实施运算分析和解决问题的过程中,要力求做到善于分析运算条件,探究运算方向,选择运算方法,设计运算程序,使运算符合算理,合理简洁。换言之,运算能力不仅是一种数学的操作能力,更是一种数学的思维能力。(3)如何培养学生的运算能力由具体到抽象由法则到算理由常量到变量由单向思维到逆向、多向思维核心概念之七:推理能力

此次《标准》提出的推理能力与过去相比,有这样一些特点:一是进一步指明了推理在数学学习中的重要意义。《标准》指出:“推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式”。它对教学的启示是,不仅要引导学生认识到推理是数学的重要基础之一,它与人们的生活息息相关,更重要的是要逐步培养学生运用推理进行思维的方式。突出了合情推理与演绎推理二是基于数学推理的特点,突出了合情推理与演绎推理这条主线。指出在数学思维和问题解决的过程中,两种推理功能不同,相辅相成——合情推理用于探索思路,发现结论;演绎推理用于证明结论。

引导学生多经历“猜想——证明”的问题探索过程

三是强调推理能力的培养“应贯穿于整个数学学习过程中”。

其一,它应贯穿于整个数学课程的各个学习内容,其二,它应贯穿于数学课堂教学的各种活动过程其三,它应贯穿于整个数学学习的环节也应贯穿于三个学段,合理安排,循序渐进,协调发展使学生多经历

“猜想——证明”的问题探索过程

在“猜想——证明”的问题探索过程中,学生能亲身经历用合情推理发现结论、用演绎推理证明结论的完整推理过程,在过程中感悟数学基本思想,积累数学活动经验,这对于学生数学素养的提升极为有利。教师要善于对素材进行此类加工,引导学生多经历这样的活动。

核心概念之八:模型思想在义务教育阶段提出模型思想主要有如下理由:

第一,模型思想是一种基本的数学思想;

第二,模型思想及相应的建模活动与很多课程

目标点密切相关(如数感、符号意识、

几何直观、发现、提出问题能力、数学

的联系、数学应用意识、改善数学学习

方式等等),提出模型思想能很好地支

撑这些课程目标的实现;

第三,模型思想本身就渗透于各课程内容领域之中,突出模型思想有利于更好理解、掌握所学内容;第四,培养学生的模型思想对义务教育阶段学生来说是可行的。此外还要看到,数学建模已是高中数学课程的学习内容,提出模型思想亦能更好与高中课程衔接。对数学建模的认识所谓数学模型,就是根据特定的研究目的和问题,采用形式化的数学语言,去抽象地,概括地表征所研究对象的主要特征、关系所形成的

一种数学结构。在义务教育阶段数学中,用字母、数字及其他数学符号建立起来的代数式、关系式、方程、函数、不等式,及各种图表、图形等都是数学模型。

《标准》中模型思想的含义及要求模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。

使学生体会和理解数学与外部世界的联系是这一核心概念的本质要求《标准》从义务教育数学课程的实际情况出发,将这一过程进一步简化为这样三个环节:首先是“从现实生活或具体情境中抽象数学问题”。这说明发现和提出问题是数学建模的起点。然后“用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律”。在这一步中,学生要通过观察、分析、抽象、概括、选择、判断等等数学活动,完成模式抽象,得到模型。这是建模最重要的一个环节。最后,通过模型去求出结果,并用此结果去解释、讨论它在现实问题中的意义。模型思想的培养在三学段,主要是结合相关概念学习,引导学生运用函数、不等式、方程、方程组、几何图形、统计表格等分析表达现实问题,解决现实问题。模型思想的渗透是多方位的。模型思想的感悟应该蕴含于日常教学之中,

使学生经历“问题情境——建立模型

——求解验证”的数学活动过程

“问题情境——建立模型——求解验证”的数学活动过程体现了《标准》中模型思想的基本要求,也有利于学生在过程中理解、掌握有关知识、技能,积累数学活动经验,感悟模型思想的本质。这一过程更有利于学生去发现、提出、分析、解决问题,培养创新意识。核心概念之九:应用意识应用意识有两个方面的含义:一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题——数学知识现实化另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。

——现实问题数学化核心概念之十:创新意识创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。从基础、核心、方法三个方面指明了创新意识的要素。这为我们培养学生创新意识提出了几个基本的切入点和路径,使创新意识的培养落在了比较实在的载体上,即围绕这三个要素,教师应紧紧抓住“数学问题”、“学会思考”、“猜想、验证”这几个点,做足教学中的“文章”,创新意识培养的目标就有可能得到落实。3.关于课程目标的修改

在目标的结构上仍按:总体目标总体表述知识技能数学思考问题解决情感态度学段目标第一学段第二学段第三学段(1)目标上有哪些变化?

在总体目标中突出了“培养学生创新精神和实践能力”的改革方向和目标价值取向。

变化之一:明确提出四基,即“基础知识、基本技能、基本活动经验、基本思想”变化之二:针对创新精神和实践能力的培养,明确提出“发现问题和提出问题的能力、分析问题和解决问题的能力”变化之三:针对了解知识的来龙去脉,明确提出“体会数学知识之间、数学与其他学科之间、数学与生活之间的联系”变化之四:对于情感态度的培养,进一步明确“了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯”变化之五:针对学科精神的培养,明确提出“具有初步的创新意识和科学态度”数学课程总目标有那些新变化?(2)对几个新目标点的分析目标点一:“四基”从“双基”到“四基”

——对数学教学有何意义?何为数学基本思想?德国诺贝尔奖获得者、物理学家冯.劳厄:

“教育无非是一切已学过的东西都忘掉时所剩下的东西”数学课堂教学应该是有思想的教学!有了思想才有了课堂的生命什么是数学学习中最本质的东西?波利亚(美)一贯强调把“有益的思考方式,应有的思维习惯”放在教学的首位。闵山国藏(日本)指出,学生在毕业之后不久,数学知识就很快忘掉了,“然而,不管他们从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、思维方法、推理方法和着眼点(如果培养了这种素质的话),在随时发生作用,使他们受益终身。”

可以讨论的观点:“数学发展所依赖的思想在本质上有三个:抽象、推理、模型,……通过抽象,在现实生活中得到数学的概念和运算法则,通过推理得到数学的发展,然后通过模型建立数学与外部世界的联系”(史宁中,《数学思想概论》第一辑,东北师范大学出版社,2008.6,第一页)。从数学产生、数学内部发展、数学外部关联三个维度上概括了对数学发展影响最大的三个重要思想。何为数学基本思想?数学基本思想是指对数学及其对象、数学概念和数学结构以及数学方法的本质性认识数学思想蕴涵在数学知识形成、发展和应用的过程中;它制约着学科发展的主线和逻辑架构;是数学知识和方法在更高层次上的抽象与概括。如归纳、演绎、抽象、转化、分类、模型、结构、数形结合、随机…等。如何理解?三个常用的概念:

数学思想

数学方法

数学思想方法注意教材中蕴含的数学基本思想在课程内容和教材中,数学基本思想其实是很丰富的,这些思想常常处于潜形态,教师要成为有心人

如何使数学思想从潜形态转变为显形态呢?

※分类

※化归

※归纳

经验与思想?R.柯朗H.罗宾:

“只有靠了数学自身的经验,才能把握数学思想是什么?”

什么是数学活动经验?

黄翔《获得数学活动经验应成为

数学课堂教学关注的目标》

——《课程.教材.教法》2008.1期

数学活动经验的基本特征:

—主体性

—发展性

—多样性

—实践(过程)性数学基本活动经验:学习主体通过亲身经历数学活动过程所获得的具有个性特征的经验。“四基”是客观性知识与主观性体验的结合是结果性知识与过程性活动的结合

经验,在哲学上指人们在同客观事物直接接触的过程中通过感觉器官获得的关于客观事物的现象和外部联系的认识。“四基”与数学素养掌握数学基础知识训练数学基本技能领悟数学基本思想积累数学基本活动经验

——发展学生的数学素养,培养学生的创新精神和实践能力目标点二:为何要强调

发现问题、提出问题?在数学中,发现结论常常比证明结论更重要创新性的成果往往始于问题传统教学在这方面的不足问题解决的全过程是发现、提出、分析、解决问题的过程我们需要问题驱动、

分析探究的课堂研究始于问题,同样,教学也应该始于问题没有问题的课堂是没有思想、没有生命力的课堂

思想是课堂的生命!

问题是课堂的灵魂!我们要通过这样的课堂

培养学生的问题意识发现问题、提出问题是创新的基础诺贝尔奖金获得者李政道教授认为“我们学习知识,目的是要做到‘学问’。学习,就是学习问问题,学习怎样问问题。”

做学问与‘学问’目标点三:增强数学的联系这里说到学生要体会三个方面的联系:数学知识之间的联系(系统性、综合性)数学与其他学科之间的联系(相关性、工具性)数学与生活之间的联系(应用性)目标点四:数学学习习惯第一次提出“培养学生良好的数学学习习惯”《标准》在“情感与态度”目标中具体指明了其含义:

“养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯。”什么是学习习惯?

为什么要提出培养学习习惯?学习习惯指在长期的学习中逐渐养成的、较稳固的学习行为、倾向和习性。之所以提出数学学习习惯,一是因为在长达九年的义务教育学习阶段,一个人在学习上的习惯总是处于不断的养成过程中,它是与学习行为相伴而行的,客观存在的。

在日常教学中刻意诱导,潜移默化,点滴

积累,通过长时间的磨练,方能习以为常。

二是良好的数学学习习惯具有很强的心理内驱力和学习目标达成的惯性力,它有利于学生通过自主学习形成学习的正向迁移,提高学习效率三是良好的数学学习习惯能帮助学生逐步实现由“学会”到“会学”的转变,使学生今后在适应终身学习上受益。

4.关于内容标准的修改将“内容标准”的提法

改为“课程内容”7-9年级,第三学段关于课程内容的修改课程内容中的条目数量统计(三学段)

原标准修订标准差数与代数

4852(3)+4(3)图形与几何

8389(4)+6(4)统计与概率

1311-2综合与实践

43-1合计

148155(7)+7(7)三学段关于课程内容的修改数与代数:增加了:知道|a|的含义(这里a表示有理数)知道最简二次根式和最简分式的概念能进行简单的整式乘法运算中增加了一次式与二次式相乘会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等会用待定系系数法确定一次函数的解析表达式数与代数:增加了:*了解一元二次方程根与系数关系、*能解简单的三元一次方程组、*知道给定不共线三点的坐标可以确定一个二次函数。删除的内容

:能对含有较大数字的信息作出合理的解释与推断了解有效数字的概念能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题求绝对值时关于“绝对值符号内不含字母”的限制。

图形与几何(三学段):内容结构上略有调整(图形的性质、图形的运动、图形与坐标)(原来是图形的认识、图形与变换、图形与坐标、图形与证明)对基本事实规定更清晰(9条),不再使用“公理”这个词增强了“图形与几何”内容的条理性,进一步阐述了合情推理和演绎推理的关系,强调了几何证明表述方式的多样性增加了:会比较线段的长短,理解线段的和、差,以及线段中点的意义了解平行于同一条直线的两条直线平行会按照边长的关系和角的大小对三角形进行分类了解并证明圆内接四边形的对角互补;了解正多边形的概念及正多边形与圆的关系尺规作图:过一点作已知直线的垂线已知一直角边和斜边作直角三角形作三角形的外接圆、内切圆作圆的内接正方形和正六边形*了解平行线性质定理的证明;*了解相似三角形判定定理的证明;*探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧;*探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等;*了解圆周角及其推论的证明;*了解平行线性

质定理的证明

证明两直线平行,同位角相等。这个证明可以利用反证法完成。如图15所示,我们希望证明:如果AB∥CD,那么∠1=∠2。假设∠1≠∠2,过点O作直线A′B′,使∠EOB′=∠2。根据“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”这个基本事实,可得A′B′∥CD。这样,过点O就有两条直线AB,A′B′平行于CD,这与基本事实“过直线外一点有且只有一条直线与这条直线平行”矛盾,说明∠1≠∠2的假设是不对的,于是有∠1=∠2。基本事实1:两点确定一条直线。基本事实2:两点之间线段最短。基本事实3:过一点有且只有一条直线与这条直线垂直。基本事实4:两条直线被第三条直线所截,如果同位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论