版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
OutlineConceptionofdeeplearningDevelopmenthistoryDeeplearningframeworksDeepneuralnetworkarchitecturesConvolutionalneuralnetworks
IntroductionNetworkstructureTrainingtricksApplicationinAestheticImageEvaluationIdea
OutlineConceptionofdeeplear1DeepLearning(Hinton,2006)Deeplearningisabranchofmachinelearningbasedonasetofalgorithmsthatattempttomodelhighlevelabstractionsindata.Theadvantageofdeeplearningistoextractingfeaturesautomatically
insteadofextractingfeaturesmanually.ComputervisionSpeechrecognitionNaturallanguageprocessingDeepLearning(Hinton,2006)Deep2DevelopmentHistory194319401950196019701980199020002010MPmodel1958Single-layerPerceptron1969XORproblem1986BPalgorithm1989CNN-LeNet19951997SVMLSTMGradientdisappearanceproblem19912006DBNReLU201120122015DropoutAlexNetBNFasterR-CNNResidualNetGeoffreyHintonW.PittsRosenblattMarvinMinskyYannLeCunHintonHintonHintonLeCunBengioDevelopmentHistory194319403DeepLearningFrameworksDeepLearningFrameworks4DeepneuralnetworkarchitecturesDeepBeliefNetworks(DBN)RecurrentNeuralNetworks(RNN)GenerativeAdversarialNetworks(GANs)ConvolutionalNeuralNetworks(CNN)LongShort-TermMemory(LSTM)Deepneuralnetworkarchitectu5DBN(DeepBeliefNetwork,2006)Hiddenunitsandvisibleunits
Eachunitisbinary(0or1).
Everyvisibleunitconnectstoallthehiddenunits.
Everyhiddenunitconnectstoallthevisibleunits.
Therearenoconnectionsbetweenv-vandh-h.HintonGE.Deepbeliefnetworks[J].Scholarpedia,2009,4(6):5947.Fig1.RBM(restrictedBoltzmannmachine)structure.Fig2.DBN(deepbeliefnetwork)structure.Idea?ComposedofmultiplelayersofRBM.Howtowetraintheseadditionallayers?
UnsupervisedgreedyapproachDBN(DeepBeliefNetwork,2006)H6RNN(RecurrentNeuralNetwork,2013)What?RNNaimstoprocessthesequencedata.RNNwillrememberthepreviousinformationandapplyittothecalculationofthecurrentoutput.Thatis,thenodesofthehiddenlayerareconnected,andtheinputofthehiddenlayerincludesnotonlytheoutputoftheinputlayerbutalsotheoutputofthehiddenlayer.MarhonSA,CameronCJF,KremerSC.RecurrentNeuralNetworks[M]//HandbookonNeuralInformationProcessing.SpringerBerlinHeidelberg,2013:29-65.Applications?MachineTranslationGeneratingImageDescriptionsSpeechRecognitionHowtotrain?
BPTT(Backpropagationthroughtime)RNN(RecurrentNeuralNetwork,27Testingstage:Wiley-IEEEPress,2009.OverFeat:IntegratedRecognition,LocalizationandDetectionusingConvolutionalNetworks[J].Classify:TrainingalinearSVMclassifierforeachclass.LuX,LinZ,JinH,etal.DropoutLayer),ConvolutionlayerShortcutconnectionslayers_['conv2d1'])ArchitectureofMSDLM:SqueezeNet:AlexNet-levelaccuracywith50xfewerparametersand<0.layershavealargereceptivefieldCanceledthefullyconnnectedlayerextracttheartificialfeatures),wecandirectlyinputtheoriginalimage.arXivpreprintarXiv:1502.GANsInspiredbyzero-sumGameinGameTheory,whichconsistsofapairofnetworks-ageneratornetworkandadiscriminatornetwork.cm=confusion_matrix(y_test,preds)CNNStructureEvolutionResidualNetX_train,y_train=data[0]GANs(GenerativeAdversarialNetworks,2014)GANsInspiredbyzero-sumGameinGameTheory,whichconsistsofapairofnetworks-ageneratornetworkandadiscriminatornetwork.Thegeneratornetworkgeneratesasamplefromtherandomvector,thediscriminatornetworkdiscriminateswhetheragivensampleisnaturalorcounterfeit.Bothnetworkstraintogethertoimprovetheirperformanceuntiltheyreachapointwherecounterfeitandrealsamplescannotbedistinguished.GoodfellowI,Pouget-AbadieJ,MirzaM,etal.Generativeadversarialnets[C]//Advancesinneuralinformationprocessingsystems.2014:2672-2680.Applacations:ImageeditingImagetoimagetranslationGeneratetextGenerateimagesbasedontextCombinedwithreinforcementlearningAndmore…Testingstage:GANs(Generative8LongShort-TermMemory(LSTM,1997)LongShort-TermMemory(LSTM,199NeuralNetworksNeuronNeuralnetworkNeuralNetworksNeuronNeuralne10ConvolutionalNeuralNetworks(CNN)Convolutionneuralnetworkisakindoffeedforwardneuralnetwork,whichhasthecharacteristicsofsimplestructure,lesstrainingparametersandstrongadaptability.CNN
avoids
thecomplexpre-processingofimage(etc.extracttheartificialfeatures),wecandirectlyinput
theoriginalimage.
Basiccomponents:ConvolutionLayers,PoolingLayers,FullyconnectedLayersConvolutionalNeuralNetworks(11ConvolutionlayerTheconvolutionkerneltranslates
ona2-dimensionalplane,andeachelementoftheconvolutionkernelismultiplied
bytheelementatthecorrespondingpositionoftheconvolutionimageandthensumalltheproduct.Bymovingtheconvolutionkernel,wehaveanewimage,whichconsistsofthesumoftheproductoftheconvolutionkernelateachposition.localreceptivefieldweightsharingReduced
thenumberofparametersConvolutionlayerTheconvoluti12PoolinglayerPoolinglayeraimstocompresstheinputfeaturemap,whichcanreducethenumberofparameters
intrainingprocessandthedegreeof
over-fitting
ofthemodel.Max-pooling:Selectingthemaximumvalueinthepoolingwindow.Mean-pooling:Calculatingtheaverageofallvaluesinthepoolingwindow.PoolinglayerPoolinglayeraim13FullyconnectedlayerandSoftmaxlayerEachnodeofthefullyconnectedlayerisconnectedtoallthenodesofthelastlayer,whichisusedtocombinethefeaturesextractedfromthefrontlayers.Fig1.Fullyconnectedlayer.Fig2.CompleteCNNstructure.Fig3.Softmaxlayer.FullyconnectedlayerandSoft14TrainingandTestingForwardpropagation-Takingasample(X,Yp)fromthesamplesetandputtheXintothenetwork;-CalculatingthecorrespondingactualoutputOp.Backpropagation-CalculatingthedifferencebetweentheactualoutputOpandthecorrespondingidealoutputYp;-Adjustingtheweightmatrixbyminimizingtheerror.Trainingstage:Testingstage:Puttingdifferentimagesandlabelsintothetrainedconvolutionneuralnetworkandcomparingtheoutputandtheactualvalueofthesample.Beforethetrainingstage,weshouldusesomedifferentsmallrandomnumberstoinitializeweights.TrainingandTestingForwardpr15CNNStructureEvolutionHintonBPNeocognitionLeCunLeNetAlexNetHistoricalbreakthroughReLUDropoutGPU+BigDataVGG16VGG19MSRA-NetDeepernetworkNINGoogLeNetInceptionV3InceptionV4R-CNNSPP-NetFastR-CNNFasterR-CNNInceptionV2(BN)FCNFCN+CRFSTNetCNN+RNN/LSTMResNetEnhancedthefunctionalityoftheconvolutionmoduleClassificationtaskDetectiontaskAdd
newfunctionalunitintegration19801998198920142015ImageNetILSVRC(ImageNetLargeScaleVisualRecognitionChallenge)20132014201520152014,2015201520122015BN(BatchNormalization)RPNCNNStructureEvolutionHinton16LeNet(LeCun,1998)LeNet
isaconvolutionalneuralnetworkdesignedbyYannLeCunforhandwrittennumeralrecognitionin1998.Itisoneofthemostrepresentativeexperimentalsystemsinearlyconvolutionalneuralnetworks.LeNetincludestheconvolutionlayer,poolinglayer
andfull-connectedlayer,whicharethebasiccomponentsofmodernCNNnetwork.LeNetisconsideredtobethebeginningoftheCNN.networkstructure:3convolutionlayers+2poolinglayers+1fullyconnectedlayer+1outputlayerHaykinS,KoskoB.GradientBasedLearningAppliedtoDocumentRecognition[D].Wiley-IEEEPress,2009.LeNet(LeCun,1998)LeNetisaco17AlexNet(Alex,2012)Networkstructure:5convolutionlayers+3fullyconnectedlayersThenonlinearactivationfunction:ReLU(Rectifiedlinearunit)Methodstopreventoverfitting:Dropout,DataAugmentationBigDataTraining:ImageNet--imagedatabaseofmillionordersofmagnitudeOthers:GPU,LRN(localresponsenormalization)layerKrizhevskyA,SutskeverI,HintonGE.ImageNetclassificationwithdeepconvolutionalneuralnetworks[C]//InternationalConferenceonNeuralInformationProcessingSystems.CurranAssociatesInc.2012:1097-1105.AlexNet(Alex,2012)Networkstru18X_train,y_train=data[0]filename=Thearchitectureofthemulti-scenedeeplearningmodel(MSDLM).Max-pooling:2*2pixelwindow,withstride2Why3*3filters?X_train,y_train,X_val,y_val,X_test,y_test=load_dataset()SemanticSegmentationRNNwillrememberthepreviousinformationandapplyittothecalculationofthecurrentoutput.FasterR-CNN(2015)ImageNetclassificationwithdeepconvolutionalneuralnetworks[C]//InternationalConferenceonNeuralInformationProcessingSystems.[7]R,DonahueJ,DarrellT,etal.2012:1097-1105.InceptionV2(2015)IntroductionarXivpreprintarXiv:1502.Theconvolutionallayerparametersaredenotedas“conv<receptivefieldsize>-<numberofchannels>”LongShort-TermMemory(LSTM)ReLU(RectifiedLinearUnit)segmentedimagesIEEETransactionsonMultimedia,2015,17(11):2021-2034.4Mlpconvlayers+GlobalaveragepoolinglayerOverfeat(2013)SermanetP,EigenD,ZhangX,etal.OverFeat:IntegratedRecognition,LocalizationandDetectionusingConvolutionalNetworks[J].EprintArxiv,2013.X_train,y_train=data[0]Over19VGG-Net(OxfordUniversity,2014)input:afixed-size224*224RGBimagefilters:averysmallreceptivefield--3*3,withstride1Max-pooling:2*2pixelwindow,withstride2Fig1.ArchitectureofVGG16Table1:ConvNetconfigurations(shownincolumns).Theconvolutionallayerparametersaredenotedas“conv<receptivefieldsize>-<numberofchannels>”
SimonyanK,ZissermanA.VeryDeepConvolutionalNetworksforLarge-ScaleImageRecognition[J].ComputerScience,2014.Why3*3filters?Stackedconv.layershavealargereceptivefieldMorenon-linearityLessparameterstolearnVGG-Net(OxfordUniversity,201420Network-in-Network(NIN,ShuichengYan,2013)Networkstructure:4Mlpconvlayers+GlobalaveragepoolinglayerFig1.linearconvolution
MLPconvolutionFig2.fullyconnectedlayer
globalaveragepoolinglayerMinLinetal,NetworkinNetwork,Arxiv2013.Fig3.NINstructureLinearcombinationofmultiplefeaturemaps.Informationintegrationofcross-channel.ReducedtheparametersReducedthenetworkAvoidedover-fittingNetwork-in-Network(NIN,Shuich21GoogLeNet(InceptionV1,2014)Fig1.Inceptionmodule,naïveversionProposedinceptionarchitectureandoptimizeditCanceled
thefullyconnnectedlayerUsedauxiliaryclassifierstoacceleratenetworkconvergenceSzegedyC,LiuW,JiaY,etal.Goingdeeperwithconvolutions[C]//ProceedingsoftheIEEEConferenceonComputerVisionandPatternRecognition.2015:1-9.Fig2.InceptionmodulewithdimensionreductionsFig3.GoogLeNetnetwork(22layers)GoogLeNet(InceptionV1,2014)Fi22InceptionV2(2015)IoffeS,SzegedyC.Batchnormalization:Acceleratingdeepnetworktrainingbyreducinginternalcovariateshift[J].arXivpreprintarXiv:1502.03167,2015.InceptionV2(2015)IoffeS,Sze23InceptionV3(2015)SzegedyC,VanhouckeV,IoffeS,etal.Rethinkingtheinceptionarchitectureforcomputervision[C]//ProceedingsoftheIEEEConferenceonComputerVisionandPatternRecognition.2016:2818-2826.InceptionV3(2015)SzegedyC,V24ResNet(KaiwenHe,2015)Asimpleandcleanframeworkoftraining“very”deepnetworks.State-of-the-artperformanceforImageclassificationObjectdetectionSemanticSegmentationandmoreHeK,ZhangX,RenS,etal.DeepResidualLearningforImageRecognition[J].2015:770-778.Fig1.ShortcutconnectionsFig2.ResNetstructure(152layers)ResNet(KaiwenHe,2015)Asimpl25FractalNetFractalNet26InceptionV4(2015)SzegedyC,IoffeS,VanhouckeV,etal.Inception-v4,inception-resnetandtheimpactofresidualconnectionsonlearning[J].arXivpreprintarXiv:1602.07261,2016.InceptionV4(2015)SzegedyC,I27Inception-ResNetHeK,ZhangX,RenS,etal.DeepResidualLearningforImageRecognition[J].2015:770-778.Inception-ResNetHeK,ZhangX,28Canceledthefullyconnnectedlayer('maxpool1',layers.RecurrentNeuralNetworks(RNN)X_val,y_val=data[1]19401950196019701980199020002010breakthroughTheadvantageofdeeplearningistoextractingfeaturesautomaticallyinsteadofextractingfeaturesmanually.RegionProposalNetwork(RPN).SpringerInternationalPublishing,2015:524-535.ClassificationtaskSqueezeNet:AlexNet-levelaccuracywith50xfewerparametersand<0.Advantages:plot_conv_weights(net1.CNNavoidsthecomplexpre-processingofimage(etc.CNNStructureEvolutionBPTT(Backpropagationthroughtime)[5]SimonyanK,ZissermanA.Avoidedover-fittingX_train,y_train,X_val,y_val,X_test,y_test=load_dataset()extracttheartificialfeatures),wecandirectlyinputtheoriginalimage.Inceptionmodule,naïveversion-Takingasample(X,Yp)fromthesamplesetandputtheXintothenetwork;RNN(RecurrentNeuralNetwork,2013)MarvinMinskyImagetoimagetranslation2015:1440-1448.Conv2DLayer),DeepLearningFrameworksRenS,HeK,GirshickR,etal.RegionProposalNetwork(RPN).y_train=y_train.X_test=X_test.RNNwillrememberthepreviousinformationandapplyittothecalculationofthecurrentoutput.4Mlpconvlayers+GlobalaveragepoolinglayerOverFeat:IntegratedRecognition,LocalizationandDetectionusingConvolutionalNetworks[J].DeepneuralnetworkarchitecturesDongZ,ShenX,LiH,etal.AllparametersinDCNNarejointlytrained.DeeplearningframeworksOutputafixedlengthfeaturevectorwithinputsofarbitrarysizes.SqueezeNet:AlexNet-levelaccuracywith50xfewerparametersand<0.Informationintegrationofcross-channel.ComparisonCanceledthefullyconnnected29SqueezeNet
SqueezeNet:AlexNet-levelaccuracywith50xfewerparametersand<0.5MBmodelsizeSqueezeNet
SqueezeNet:AlexNet30XceptionXception31R-CNN(2014)Regionproposals:SelectiveSearch
Resizetheregionproposal:Warpallregionproposalstotherequiredsize(227*227,
AlexNetInput)
ComputeCNNfeature:Extracta4096-dimensionalfeaturevectorfromeachregionproposalusingAlexNet.
Classify:TrainingalinearSVMclassifierforeachclass.[1]UijlingsJRR,SandeKEAVD,GeversT,etal.SelectiveSearchforObjectRecognition[J].InternationalJournalofComputerVision,2013,104(2):154-171.[2]GirshickR,DonahueJ,DarrellT,etal.RichFeatureHierarchiesforAccurateObjectDetectionandSemanticSegmentation[J].2014:580-587.R-CNN:Regionproposals+CNNR-CNN(2014)Regionproposals:32SPP-Net(Spatialpyramidpoolingnetwork,2015)HeK,ZhangX,RenS,etal.SpatialPyramidPoolinginDeepConvolutionalNetworksforVisualRecognition[J].IEEETransactionsonPatternAnalysis&MachineIntelligence,2015,37(9):1904-1916.Fig2.Anetworkstructurewithaspatialpyramidpoolinglayer.Fig1.Top:AconventionalCNN.Bottom:Spatialpyramidpoolingnetworkstructure.Advantages:Getthefeaturemapoftheentireimagetosavemuchtime.Outputafixedlengthfeaturevectorwithinputsofarbitrarysizes.Extractthefeatureofdifferentscale,andcanexpressmorespatialinformation.TheSPP-Netmethodcomputesaconvolutionalfeaturemapfortheentireinputimageandthenclassifieseachobjectproposalusingafeaturevectorextractedfromthesharedfeaturemap.SPP-Net(Spatialpyramidpoolin33FastR-CNN(2015)AFastR-CNNnetworktakesanentireimageandasetofobjectproposalsasinput.Thenetworkprocessestheentireimagewithseveralconvolutional(conv)andmaxpoolinglayerstoproduceaconvfeaturemap.Foreachobjectproposal,aregionofinterest(RoI)poolinglayerextractsafixed-lengthfeaturevectorfromthefeaturemap.Eachfeaturevectorisfedintoasequenceoffullyconnectedlayersthatfinallybranchintotwosiblingoutputlayers.
GirshickR.Fastr-cnn[C]//ProceedingsoftheIEEEInternationalConferenceonComputerVision.2015:1440-1448.FastR-CNN(2015)AFastR-CNNn34FasterR-CNN(2015)FasterR-CNN=RPN+FastR-CNN
ARegionProposalNetwork(RPN)takesanimage(ofanysize)asinputandoutputsasetofrectangularobjectproposals,eachwithanobjectnessscore.
RenS,HeK,GirshickR,etal.Fasterr-cnn:Towardsreal-timeobjectdetectionwithregionproposalnetworks[C]//Advancesinneuralinformationprocessingsystems.2015:91-99.Figure1.FasterR-CNNisasingle,unifiednetworkforobjectdetection.Figure2.RegionProposalNetwork(RPN).FasterR-CNN(2015)FasterR-CNN35TrainingtricksDataAugmentationDropoutReLUBatchNormalizationTrainingtricksDataAugmentati36DataAugmentation-rotation-flip-zoom-shift-scale-contrast-noisedisturbance-color-...DataAugmentation-rotation37Dropout(2012)Dropoutconsistsofsettingtozerotheoutputofeachhiddenneuronwithprobabilityp.Theneuronswhichare“droppedout”inthiswaydonotcontributetotheforwardbackpropagationanddonotparticipateinbackpropagation.Dropout(2012)Dropoutconsists38ReLU(RectifiedLinearUnit)
advantagesrectifiedSimplifiedcalculationAvoidedgradientdisappearedReLU(RectifiedLinearUnit)
ad39BatchNormalization(2015)Intheinputofeachlayerofthenetwork,insertanormalizedlayer.Foralayerwithd-dimensionalinputx=(x(1)...x(d)),wewillnormalizeeachdimension:IoffeS,SzegedyC.Batchnormalization:Acceleratingdeepnetworktrainingbyreducinginternalcovariateshift[J].arXivpreprintarXiv:1502.03167,2015.Internal
Covariate
Shift
BatchNormalization(2015)Inth40ApplicationinAestheticImageEvaluationDongZ,ShenX,LiH,etal.PhotoQualityAssessmentwithDCNNthatUnderstandsImageWell[M]//MultiMediaModeling.SpringerInternationalPublishing,2015:524-535.LuX,LinZ,JinH,etal.Ratingimageaestheticsusingdeeplearning[J].IEEETransactionsonMultimedia,2015,17(11):2021-2034.WangW,ZhaoM,WangL,etal.Amulti-scenedeeplearningmodelforimageaestheticevaluation[J].SignalProcessingImageCommunication,2016,47:511-518.ApplicationinAestheticImage41PhotoQualityAssessmentwithDCNNthatUnderstandsImageWellDCNN_Aesthtrainedwellnetworkatwo-classSVMclassifierDCNN_Aesth_SPoriginalimagessegmentedimagesspatialpyramidImageNetCUHKAVADongZ,ShenX,LiH,etal.PhotoQualityAssessmentwithDCNNthatUnderstandsImageWell[M]//MultiMediaModeling.SpringerInternationalPublishing,2015:524-535.PhotoQualityAssessmentwith42RatingimageaestheticsusingdeeplearningSupportheterogeneousinputs,i.e.,globaland
localviews.AllparametersinDCNNarejointlytrained.Fig1.GlobalviewsandlocalviewsofanimageFig3.DCNNarchitectureFig2.SCNNarchitecture
SCNNDCNN
Enablesthenetworktojudgeimageaestheticswhilesimultaneouslyconsideringboththeglobalandlocalviewsofanimage.LuX,LinZ,JinH,etal.Ratingimageaestheticsusingdeeplearning[J].IEEETransactionsonMultimedia,2015,17(11):2021-2034.Ratingimageaestheticsusing43Generativeadversarialnets[C]//Advancesinneuralinformationprocessingsystems.SermanetP,EigenD,ZhangX,etal.DeepLearningFrameworksMarhonSA,CameronCJF,KremerSC.withgzip.Enhancedthefunctionalityoftheconvolutionmodule5MBmodelsizeextracttheartificialfeatures),wecandirectlyinputtheoriginalimage.VeryDeepConvolutionalNetworksforLarge-ScaleImageRecognition[J].[6]SzegedyC,LiuW,JiaY,etal.RNN(RecurrentNeuralNetwork,2013)HaykinS,KoskoB.VeryDeepConvolutionalNetworksforLarge-ScaleImageRecognition[J].[2]GoodfellowI,Pouget-AbadieJ,MirzaM,etal.BN(BatchNormalization)InceptionmodulewithdimensionreductionsPhotoQualityAssessmentwithDCNNthatUnderstandsImageWell[M]//MultiMediaModeling.MarvinMinskyprint("DownloadingMNISTdataset.Dropoutconsistsofsettingtozerotheoutputofeachhiddenneuronwithprobabilityp.Thenonlinearactivationfunction:ReLU(Rectifiedlinearunit)RecurrentNeuralNetworks[M]//HandbookonNeuralInformationProcessing.Amulti-scenedeeplearningmodelforimageaestheticevaluationDesignasceneconvolutionallayerconsistofmulti-groupdescriptorsinthenetwork.Designapre-trainingproceduretoinitializeourmodel.Fig1.Thearchitectureofthemulti-scenedeeplearningmodel(MSDLM).Fig2.TheoverviewofproposedMSDLM.ArchitectureofMSDLM:4
convolutionallayers+1sceneconvolutionallayer+3fullyconnectedlayersWangW,ZhaoM,WangL,etal.Amulti-scenedeeplearningmodelforimageaestheticevaluation[J].SignalProcessingImageCommunication,2016,47:511-518.Generativeadversarialnets[C]44Example-Loadthedatasetdefload_dataset():url=filename=
if
print("DownloadingMNISTdataset...")
urlretrieve(url,filename)
withgzip.open(filename,'rb')asf:data=pickle.load(f)X_train,y_train=data[0]X_val,y_val=data[1]X_test,y_test=data[2]X_train=X_train.reshape((-1,1,28,28))X_val=X_val.reshape((-1,1,28,28))X_test=X_test.reshape((-1,1,28,28))y_train=y_train.astype(np.uint8)y_val=y_val.astype(np.uint8)y_test=y_test.astype(np.uint8)
returnX_train,y_train,X_val,y_val,X_test,y_test
X_train,y_train,X_val,y_val,X_test,y_test=load_dataset()plt.imshow(X_train[0][0],cmap=cm.binary)Example-Loadthedatasetdefl45Example–Modelnet1=NeuralNet(layers=[('input',layers.InputLayer),
('conv2d1',
layers.Conv2DLayer),
('maxpool1',
layers.MaxPool2DLayer),
('conv2d2',layers.Conv2DLayer),
('maxpool2',layers.MaxPool2DLayer),
('dropout1',layers.DropoutLayer),
('dense',layers.DenseLayer),
('dropout2',layers.DropoutLayer),
('output',layers.DenseLayer),
],
#inputlayerinput_shape=(None,1,28,28),#layerconv2d1conv2d1_num_filters=32,conv2d1_filter_size=(5,5),,
#layermaxpool1maxpool1_pool_size=(2,2),#layerconv2d2conv2d2_num_filters=32,conv2d2_filter_size=(5,5),,
#layermaxpool2maxpool2_pool_size=(2,2),
#dropout1dropout1_p=0.5,
#densei.e.full-connectedlayerdense_num_units=256,
#dropout2dropout2_p=0.5,
#outputoutput_num_units=10,
#optimizationmethodparamsupdate=nesterov_momentum,update_learning_rate=0.01,update_momentum=0.9,max_epochs=10,verbose=1,)Example–Modelnet1=NeuralNet46Example–TrainandTest#Trainthenetworknn=net1.fit(X_train,y_train)#Usingtheabovetrainingmodeltopredictthetestsetpreds=net1.predict(X_test)cm=confusion_matrix(y_test,preds)plt.matshow(cm)plt.title('Confusionmatrix')plt.colorbar()plt.ylabel('Truelabel')plt.xlabel('Predictedlabel')plt.show()#visualizethefeaturemapofconv2d1visualize.plot_conv_weights(net1.layers_['conv2d1'])Example–TrainandTest#Train47Example–ResultExample–Result48References[1]MarhonSA,CameronCJF,KremerSC.RecurrentNeuralNetworks[M]//HandbookonNeuralInformationProcessing.SpringerBerlinHeidelberg,2013:29-65.[2]GoodfellowI,Pouget-AbadieJ,MirzaM,etal.Generativeadversarialnets[C]//Advancesinneuralinformationprocessingsystems.2014:2672-2680.[3]HaykinS,KoskoB.GradientBasedLearningAppliedtoDocumentRecognition[D].Wiley-IEEEPress,2009.[4]KrizhevskyA,SutskeverI,HintonGE.ImageNetclassificationwithdeepconvolutionalneuralnetworks[C]//InternationalConferenceonNeuralInformationProcessingSystems.CurranAssociatesInc.2012:1097-1105.[5]SimonyanK,ZissermanA.VeryDeepConvolutionalNetworksforLarge-ScaleImageRecognition[J].ComputerScience,2014.[6]SzegedyC,LiuW,JiaY,etal.Goingdeeperwithconvolutions[C]//ProceedingsoftheIEEEConferenceonComputerVisionandPatternRecognition.2015:1-9.[7]R,DonahueJ,DarrellT,etal.RichFeatureHierarchiesforAccurateObjectDetectionandSemanticSegmentation[J].2014:580-587.[8]DongZ,ShenX,LiH,etal.PhotoQualityAssessmentwithDCNNthatUnderstandsImageWell[M]//MultiMediaModeling.SpringerInternationalPublishing,2015:524-535.[9]LuX,LinZ,JinH,etal.Ratingimageaestheticsusingdeeplearning[J].IEEETransactionsonMultimedia,2015,17(11):2021-2034.[10]WangW,ZhaoM,WangL,etal.Amulti-scenedeeplearningmodelforimageaestheticevaluation[J].SignalProcessingImageCommunication,2016,47:511-518.References[1]MarhonSA,Camer49Thanks!深学习综述讨论简介deepLearning课件50DeepLearningFrameworksDeepLearningFrameworks51DeepneuralnetworkarchitecturesDeepBeliefNetworks(DBN)RecurrentNeuralNetworks(RNN)GenerativeAdversarialNetworks(GANs)ConvolutionalNeuralNetworks(CNN)LongShort-TermMemory(LSTM)Deepneuralnetworkarchitectu52ConvolutionalNeuralNetworks(CNN)Convolutionneuralnetworkisakindoffeedforwardneuralnetwork,whichhasthecharacteristicsofsimplestructure,lesstraini
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旧变压器买卖合同
- 《商业银行风险防范》课件
- 荣德基课件梅花魂
- 《层厂房基本构造》课件
- 2024年度版权侵权赔偿合同:某版权侵权纠纷的赔偿标的及规定2篇
- 财务分析报告范文芳
- 年药品采购合同范本
- 本科生创新报告范文
- 精茶叶购销合同
- 牙齿的秘密课件小班
- 绿色资源利用案列
- 医院电子病历系统应用水平分级评价 4级实证材料基础项
- 初中历史-建设有中国特色的社会主义教学课件设计
- 观课报告-多边形的面积整理观课报告
- 双侧股骨头坏死的护理查房
- 管理沟通知到章节答案智慧树2023年浙江大学
- 口腔颌面外科学课件 31 唇腭裂手术治疗
- 英语教学设计The Last Leaf
- 国开电大本科《人文英语3》机考总题库
- 高考文言文阅读模拟训练:《旧唐书-高适传》(附答案解析与译文)
- 2022-2023小学三年级美术期末测试卷及答案
评论
0/150
提交评论