浙江省湖州长兴县联考2024届数学九年级第一学期期末质量跟踪监视模拟试题含解析_第1页
浙江省湖州长兴县联考2024届数学九年级第一学期期末质量跟踪监视模拟试题含解析_第2页
浙江省湖州长兴县联考2024届数学九年级第一学期期末质量跟踪监视模拟试题含解析_第3页
浙江省湖州长兴县联考2024届数学九年级第一学期期末质量跟踪监视模拟试题含解析_第4页
浙江省湖州长兴县联考2024届数学九年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省湖州长兴县联考2024届数学九年级第一学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为,则可列方程()A. B. C.D.2.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(1,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③1a+2b+c<0;④AD+CE=1.其中所有正确结论的序号是()A.①② B.①③ C.②③ D.②④3.如图,在平面直角坐标系中,过格点A,B,C画圆弧,则点B与下列格点连线所得的直线中,能够与该圆弧相切的格点坐标是()A.(5,2) B.(2,4) C.(1,4) D.(6,2)4.如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是()A. B. C. D.5.二次函数y=ax2+bx+c的图象如图所示,若点A(-2.2,y1),B(-3.2,y2)是图象上的两点,则y1与y2的大小关系是().A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定6.由3x=2y(x≠0),可得比例式为()A. B. C. D.7.已知关于X的方程x2+bx+a=0有一个根是-a(a0),则a-b的值为()A.1 B.2 C.-1 D.08.已知点A(﹣3,a),B(﹣2,b),C(1,c)均在抛物线y=3(x+2)2+k上,则a,b,c的大小关系是()A.c<a<b B.a<c<b C.b<a<c D.b<c<a9.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.810.直线与抛物线只有一个交点,则的值为()A. B. C. D.11.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B. C. D.12.若是方程的两根,则实数的大小关系是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,平行四边形的顶点在轴正半轴上,平行于轴,直线交轴于点,,连接,反比例函数的图象经过点.已知,则的值是________.14.二次函数的部分图像如图所示,要使函数值,则自变量的取值范围是_______.15.若,则锐角α=_____.16.若=2,则=_____.17.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.18.如图,是一个立体图形的三种视图,则这个立体图形的体积为______.三、解答题(共78分)19.(8分)已知:内接于⊙,连接并延长交于点,交⊙于点,满足.(1)如图1,求证:;(2)如图2,连接,点为弧上一点,连接,=,过点作,垂足为点,求证:;(3)如图3,在(2)的条件下,点为上一点,分别连接,,过点作,交⊙于点,,,连接,求的长.20.(8分)抛物线y=﹣x2+x+b与x轴交于A、B两点,与y轴交于点C.(1)若B点坐标为(2,0)①求实数b的值;②如图1,点E是抛物线在第一象限内的图象上的点,求△CBE面积的最大值及此时点E的坐标.(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D四点能构成平行四边形,求实数b的值.(提示:若点M,N的坐标为M(x₁,y₁),N(x₂,y₂),则线段MN的中点坐标为(,)21.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(单位:千克)与每千克售价x(单位:元)满足一次函数关系,部分数据如下表:售价x(元/千克)455060销售量y(千克)11010080(1)求y与x之间的函数表达式;(2)设商品每天的总利润为w(单位:元),则当每千克售价x定为多少元时,超市每天能获得的利润最大?最大利润是多少元?22.(10分)已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF相交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:.(2)如图②,若四边形ABCD是平行四边形,要使成立,完成下列探究过程:要使,转化成,显然△DEA与△CFD不相似,考虑,需要△DEA∽△DFG,只需∠A=∠________;另一方面,只要,需要△CFD∽△CDG,只需∠CGD=∠________.由此探究出使成立时,∠B与∠EGC应该满足的关系是________.(3)如图③,若AB=BC=6,AD=CD=8,∠BAD=90°,DE⊥CF,那么的值是多少?(直接写出结果)23.(10分)如图,在平面直角坐标系中,矩形ABCD的边CD在y轴上,点A在反比例函数的图象上,点B在反比例函数的图象上,AB交x轴与点E,.

(1)求k的值;(2)若,点P为y轴上一动点,当的值最小时,求点P的坐标.24.(10分)如图,A(8,6)是反比例函数y=(x>0)在第一象限图象上一点,连接OA,过A作AB∥x轴,且AB=OA(B在A右侧),直线OB交反比例函数y=的图象于点M(1)求反比例函数y=的表达式;(2)求点M的坐标;(3)设直线AM关系式为y=nx+b,观察图象,请直接写出不等式nx+b﹣≤0的解集.25.(12分)如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=4,求阴影部分的面积.26.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】试题解析:设从2008年起我省森林覆盖率的年平均增长率为x,依题意得60.05%(1+x)2=1%.

即60.05(1+x)2=1.

故选D.2、D【分析】①根据抛物线开口方向即可判断;②根据对称轴在y轴右侧即可判断b的取值范围;③根据抛物线与x轴的交点坐标与对称轴即可判断;④根据抛物线与x轴的交点坐标及对称轴可得AD=BD,再根据CE∥AB,即可得结论.【题目详解】①观察图象开口向下,a<0,所以①错误;②对称轴在y轴右侧,b>0,所以②正确;③因为抛物线与x轴的一个交点B的坐标为(1,0),对称轴在y轴右侧,所以当x=2时,y>0,即1a+2b+c>0,所以>③错误;④∵抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,∴AD=BD.∵CE∥AB,∴四边形ODEC为矩形,∴CE=OD,∴AD+CE=BD+OD=OB=1,所以④正确.综上:②④正确.故选:D.【题目点拨】本题考查了二次函数图象与系数的关系,解决本题的关键是综合运用二次函数图象上点的坐标特征、抛物线与x轴的交点进行计算.3、D【分析】根据切线的判定在网格中作图即可得结论.【题目详解】解:如图,过格点A,B,C画圆弧,则点B与下列格点连线所得的直线中,能够与该圆弧相切的格点坐标是(6,2).故选:D.【题目点拨】本题考查了切线的判定,掌握切线的判定定理是解题的关键.4、C【解题分析】根据简单几何体的三视图即可求解.【题目详解】三视图的俯视图,应从上面看,故选C【题目点拨】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.5、A【分析】根据抛物线的对称性质进行解答.【题目详解】因为抛物线y=ax2+bx+c的对称轴是x=−3,点A(-2.2,y1),B(-3.2,y2),所以点B与对称轴的距离小于点A到对称轴的距离,所以y1<y2故选:A.【题目点拨】考查了二次函数的性质,二次函数图象上点的坐标特征.解题时,利用了二次函数图象的对称性.6、C【分析】由3x=2y(x≠0),根据两内项之积等于两外项之积对各选项分析判断即可得解.【题目详解】解:A、由得,2x=3y,故本选项不符合题意;B、由得,2x=3y,故本选项不符合题意;C、由得,3x=2y,故本选项符合题意;D、由得,xy=6,故本选项不符合题意.故选:C.【题目点拨】本题考查比例的性质相关,主要利用了两内项之积等于两外项之积,熟练掌握其性质是解题的关键.7、C【解题分析】由一元二次方程的根与系数的关系x1•x2=、以及已知条件求出方程的另一根是-1,然后将-1代入原方程,求a-b的值即可.【题目详解】∵关于x的方程x2+bx+a=0的一个根是-a(a≠0),

∴x1•(-a)=a,即x1=-1,把x1=-1代入原方程,得:

1-b+a=0,

∴a-b=-1.

故选C.【题目点拨】本题主要考查了一元二次方程的解.解题关键是根据一元二次方程的根与系数的关系确定方程的一个根.8、C【分析】通过确定A、B、C三个点和函数对称轴的距离,确定对应y轴的大小.【题目详解】解:函数的对称轴为:x=﹣2,a=3>0,故开口向上,x=1比x=﹣3离对称轴远,故c最大,b为函数最小值,故选:C.【题目点拨】本题主要考查了二次函数的性质,能根据题意,巧妙地利用性质进行解题是解此题的关键9、C【分析】根据垂径定理得出BC=AB,再根据勾股定理求出OC的长:【题目详解】∵OC⊥AB,AB=16,∴BC=AB=1.在Rt△BOC中,OB=10,BC=1,∴.故选C.10、D【分析】直线y=-4x+1与抛物线y=x2+2x+k只有一个交点,则把y=-4x+1代入二次函数的解析式,得到的关于x的方程中,判别式△=0,据此即可求解.【题目详解】根据题意得:x2+2x+k=-4x+1,

即x2+6x+(k-1)=0,

则△=36-4(k-1)=0,

解得:k=1.

故选:D.【题目点拨】本题考查了二次函数与一次函数的交点个数的判断,把一次函数代入二次函数的解析式,得到的关于x的方程中,判别式△>0,则两个函数有两个交点,若△=0,则只有一个交点,若△<0,则没有交点.11、B【分析】连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.【题目详解】连接OA,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC=,∴PA=tan60°×1=.故选B.【题目点拨】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.12、A【分析】设,可判断抛物线开口向下,m、n是其与x轴交点的横坐标,a、b则是抛物线与直线y=2的交点横坐标,画出函数草图即可判断.【题目详解】设,可判断抛物线开口向下,m、n是其与x轴交点的横坐标,a、b则是抛物线与直线y=2的交点横坐标,画出函数草图如下:从函数图象可以看出:故选:A【题目点拨】本题考查的是二次函数与一元二次方程的关系,掌握抛物线与x轴的交点的横坐标为y=0时,一元二次方程的根是关键.二、填空题(每题4分,共24分)13、1【分析】设D点坐标为(m,n),则AB=CD=m,由平行四边形的性质可得出∠BAC=∠CEO,结合∠BCA=∠COE=90°,即可证出△ABC∽△ECO,根据相似三角形的性质可得出BC•EC=AB•CO=mn,再根据S△BCE=3,即可求出k=1,此题得解.【题目详解】解:设D点坐标为(m,n),则AB=CD=m,∵CD平行于x轴,AB∥CD,∴∠BAC=∠CEO.∵BC⊥AC,∠COE=90°,∴∠BCA=∠COE=90°,∴△ABC∽△ECO,∴AB:CE=BC:CO,∴∴BC•EC=AB•CO=mn.∵反比例函数y=kx(x>0)的图象经过点D,∴k=mn=BC•EC=2S△BCE=1.故答案为:1.【题目点拨】本题考查了反比例函数图象上点的坐标特征、平行四边形的性质以及相似三角形的判定与性质,由△ABC∽△ECO得出k=mn=BC•EC是解题的关键.14、【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【题目详解】根据二次函数的图象可知:对称轴为,已知一个点为,

根据抛物线的对称性,则点关于对称性对称的另一个点为,

所以时,的取值范围是.故答案为:.【题目点拨】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点的对称点是解题的关键.15、45°【分析】首先求得cosα的值,即可求得锐角α的度数.【题目详解】解:∵,∴cosα=,∴α=45°.故答案是:45°.【题目点拨】本题考查了特殊的三角函数值,属于简单题,熟悉三角函数的概念是解题关键.16、1【分析】根据=1,得出x=1y,再代入要求的式子进行计算即可.【题目详解】∵=1,∴x=1y,∴;故答案为:1.【题目点拨】本题主要考查了比例的基本性质.解答此题的关键是根据比例的基本性质求得x=1y.17、1【分析】设共有x个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:,把相关数值代入求正数解即可.【题目详解】设共有x个飞机场.,解得,(不合题意,舍去),故答案为:1.【题目点拨】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.18、【分析】根据该立体图形的三视图可判断该立体图形为圆柱,且底面直径为8,高为8,根据圆柱的体积公式即可得答案.【题目详解】∵该立体图形的三视图为两个正方形和一个圆,∴该立体图形为圆柱,且底面直径为8,高为8,∴这个立体图形的体积为×42×8=128,故答案为:128【题目点拨】本题考查由三视图判断几何体;利用该几何体的三视图得到该几何体底面半径、高是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3).【分析】(1)如图1中,连接AD.设∠BEC=3α,∠ACD=α,再根据圆周角定理以及三角形内角和与外角的性质证明∠ACB=∠ABC即可解决问题;

(2)如图2中,连接AD,在CD上取一点Z,使得CZ=BD.证明△ADB≌△AZC(SAS),推出AD=AZ即可解决问题;

(3)连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.假设OH=a,PC=2a,求出sin∠OHK=,从而得出∠OHK=45°,再根据角度的转化得出∠DAG=∠ACO=∠OAK,从而有tan∠ACD=tan∠DAG=tan∠OAK=,进而可求出DG,AG的长,再通过勾股定理以及解直角三角形函数可求出FT,PT的长即可解决问题.【题目详解】(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.

∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,

∵CD是直径,∴∠DAC=90°,

∴∠D=90°-α,∴∠B=∠D=90°-α,

∵∠ACB=180°-∠BAC-∠ABC=180°-2α-(90°-α)=90°-α.

∴∠ABC=∠ACB,

∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.

∵=,∴DB=CF,

∵∠DBA=∠DCA,CZ=BD,AB=AC,

∴△ADB≌△AZC(SAS),∴AD=AZ,

∵AG⊥DZ,∴DG=GZ,

∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.

∵CP⊥AC,∴∠ACP=90°,∴PA是直径,

∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,

∴四边形OKCR是矩形,∴RC=OK,

∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,

∴RC=OK=a,sin∠OHK=,∴∠OHK=45°.

∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°-90°-45°=45°,

∵CD是直径,∴∠DAC=90°,∴∠ADH=90°-45°=45°,

∴∠DHA=∠ADH,∴AD=AH,

∵∠COP=∠AOD,∴AD=PC,

∴AH=AD=PC=2a,

∴AK=AH+HK=2a+a=3a,

在Rt△AOK中,tan∠OAK=,OA=,∴sin∠OAK=,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,

∵AO=CO,∴∠OAK=∠ACO,

∴∠DAG=∠ACO=∠OAK,

∴tan∠ACD=tan∠DAG=tan∠OAK=,

∴AG=3DG,CG=3AG,

∴CG=9DG,

由(2)可知,CG=DG+CF,

∴DG+12=9DG,∴DG=,AG=3DG=3×=,

∴AD=,∴PC=AD=.∵sin∠F=sin∠OAK,∴sin∠F=,∴CT=,FT=,PT=,∴PF=FT-PT=.【题目点拨】本题属于圆综合题,考查了圆周角定理,垂径定理,全等三角形的判定和性质,解直角三角形,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.20、(1)①b=2;②△CBE面积的最大值为1,此时E(1,2);(2)b=﹣1+或b=,(,)【分析】(1)①将点B(2,0)代入y=﹣x2+x+b即可求b;②设E(m,﹣m2+m+2),求出BC的直线解析式为y=﹣x+2,和过点E与BC垂直的直线解析式为y=x﹣m2+2,求出两直线交点F,则EF最大时,△CBE面积的最大;(2)可求C(0,b),B(,0),设M(t,﹣t2+t+b),利用对角线互相平分的四边形是平行四边形,则分三种情况求解:①当CM和BD为平行四边形的对角线时,=,=0,解得b=﹣1+;②当BM和CD为平行四边形的对角线时,=,=,b无解;③当BC和MD为平行四边形的对角线时,=,=,解得b=或b=﹣(舍).【题目详解】解:(1)①将点B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直线解析式为y=﹣x+2,设E(m,﹣m2+m+2),过点E与BC垂直的直线解析式为y=x﹣m2+2,∴直线BC与其垂线的交点为F(,﹣+2),∴EF=(﹣+2)=[﹣(m﹣1)2+],当m=1时,EF有最大值,∴S=×BC×EF=×2×=1,∴△CBE面积的最大值为1,此时E(1,2);(2)∵抛物线的对称轴为x=,∴D(,0),∵函数与x轴有两个交点,∴△=1+4b>0,∴b>﹣,∵C(0,b),B(,0),设M(t,﹣t2+t+b),①当CM和BD为平行四边形的对角线时,C、M的中点为(,),B、D的中点为(,0),∴=,=0,解得:b=﹣1+或b=﹣1﹣(舍去),∴b=﹣1+;②当BM和CD为平行四边形的对角线时,B、M的中点为(,),C、D的中点为(,),∴=,=,∴b无解;③当BC和MD为平行四边形的对角线时,B、C的中点为(,),M、D的中点为(,),∴=,=,解得:b=或b=﹣(舍);综上所述:b=﹣1+或b=.【题目点拨】本题考查二次函数的综合;熟练掌握二次函数的图象及性质,熟练应用平行四边形的判定方法是解题的关键.21、(1)y=﹣2x+200(40≤x≤60);(2)售价为60元时获得最大利润,最大利润是1600元.【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.【题目详解】解:(1)设y=kx+b,将(50,100)、(60,80)代入,得:,解得:,∴y=﹣2x+200(40≤x≤60);(2)w=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∵40≤x≤60,∴当x=60时,w取得最大值为1600,答:w与x之间的函数表达式为W=﹣2x2+280x﹣8000,售价为60元时获得最大利润,最大利润是1600元.【题目点拨】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.22、(1)证明见解析;(2)DGF,CDF,∠B+∠EGC=180°;(3).【分析】(1)根据矩形性质得出∠A=∠FDC=90°,求出∠CFD=∠AED,证出△AED∽△DFC即可;(2)当∠B+∠EGC=180°时,成立,分别证明即可;(3)过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,证△BCM∽△DCN,求出CM=x,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,代入得出方程(x−2)2+(x)2=22,求出CN=,证出△AED∽△NFC,即可得出答案.【题目详解】(1)证明:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴;(2)当∠B+∠EGC=180°时,.要使,转化成,显然△DEA与△CFD不相似,考虑,需要△DEA∽△DFG,只需∠A=∠DGF;另一方面,只要,需要△CFD∽△CDG,只需∠CGD=∠CDF.当∠B+∠EGC=180°时:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∵∠FDG=∠EDA,∴△DFG∽△DEA,∴,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴,∴,∴,即当∠B+∠EGC=180°时,成立;(3)过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,

∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,∵在△BAD和△BCD中,,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴,∴,∴CM=x,在Rt△CMB中,CM=x,BM=AM−AB=x−2,由勾股定理得:BM2+CM2=BC2,∴(x−2)2+(x)2=22,x=0(舍去),x=,CN=,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴.【题目点拨】本题考查了矩形性质和判定,勾股定理,平行四边形的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定的应用,主要考查学生综合运用性质和定理进行推理的能力,题目比较好.23、(1);(2)(0,)【分析】(1)设B(a,b),由反比例函数图象上点的坐标特征用函数a的代数式表示出来b,进而可得ab=6,再根据可得,再设A(m,n),可得,再根据即可求得k的值;(2)先根据求得点A、B的坐标,再利用轴对称找到符合题意的点P,求出直线的函数关系式,进而可求出点P的坐标.【题目详解】解:(1)设B(a,b),∵B在反比例函数的图象上,∴b=,∴ab=6,即,∵.∴,∴设A(m,n),∵A在反比例函数的图象上,∴,∴,∵,∴,∴,∴,即;(2)∵,∴当a=2时,b==3,∴B(2,3),当m=2时,∴A(2,-2),作点B关于y轴的对称点(-2,3),连接,交y轴于点P,连接PB,则PB=,∴,∵两点之间,线段最短,∴此时的即可取得最小值,设为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论