版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市四校联考2024届数学九上期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.方程的解是()A. B. C., D.,2.如图,已知一次函数y=kx-2的图象与x轴、y轴分别交于A,B两点,与反比例函数的图象交于点C,且AB=AC,则k的值为()A.1 B.2 C.3 D.43.如果某人沿坡度为的斜坡前进10m,那么他所在的位置比原来的位置升高了()A.6m B.8m C.10m D.12m4.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互增了182件.如果全组共有x名同学,则根据题意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×25.下列说法正确的个数是()①相等的弦所对的弧相等;②相等的弦所对的圆心角相等;③长度相等的弧是等弧;④相等的弦所对的圆周角相等;⑤圆周角越大所对的弧越长;⑥等弧所对的圆心角相等;A.个 B.个 C.个 D.个6.关于的一元二次方程有实数根,则的取值范围是()A. B.且 C. D.且7.下列说法中,正确的个数()①位似图形都相似:②两个等边三角形一定是位似图形;③两个相似多边形的面积比为5:1.则周长的比为5:1;④两个大小不相等的圆一定是位似图形.A.1个 B.2个 C.3个 D.4个8.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C.且 D.且9.如图,将小正方形AEFG绕大正方形ABCD的顶点A顺时针旋转一定的角度α(其中0°≤α≤90°),连接BG、DE相交于点O,再连接AO、BE、DG.王凯同学在探究该图形的变化时,提出了四个结论:①BG=DE;②BG⊥DE;③∠DOA=∠GOA;④S△ADG=S△ABE,其中结论正确的个数有()A.1个 B.2个 C.3个 D.4个10.如果一个一元二次方程的根是x1=x2=1,那么这个方程是A.(x+1)2=0B.(x-1)2=0C.x2=1D.x2+1=0二、填空题(每小题3分,共24分)11.如图,直线,若,则的值为_________12.如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.过点D作DG∥BE,交BC于点G,连接FG交BD于点O.若AB=6,AD=8,则DG的长为_____.13.如图,已知点A,C在反比例函数的图象上,点B,D在反比例函的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=5,CD=4,AB与CD的距离为6,则a−b的值是_______.14.如图,AB为半圆的直径,点D在半圆弧上,过点D作AB的平行线与过点A半圆的切线交于点C,点E在AB上,若DE垂直平分BC,则=______.15.如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为________m.(结果精确到0.1m)16.如果两个相似三角形的对应边的比是4:5,那么这两个三角形的面积比是_____.17.在函数中,自变量的取值范围是______.18.随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________.三、解答题(共66分)19.(10分)如图,在等腰三角形ABC中,于点H,点E是AH上一点,延长AH至点F,使.求证:四边形EBFC是菱形.20.(6分)有一个人患了流感,经过两轮传染后共有196个人患了流感,每轮传染中平均一个人传染了几个人?21.(6分)小琴和小江参加学校举行的“经典诵读"比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母依次表示这三个诵读材料),将这三个字母分别写在张完全相同的不透明卡片的正面上,把这张卡片背面朝上洗匀后放在桌面上,比赛时小琴先从中随机抽取一张卡片,记录下卡精上的内容,放回后洗匀,再由小江从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.小琴诵读《论语》的概率是.请用列表法或画树状图(树形图)法求小琴和小江诵读两个不同材料的概率.22.(8分)如图,在正方形ABCD中,E为边AD上的点,点F在边CD上,且CF=3FD,∠BEF=90°(1)求证:△ABE∽△DEF;(2)若AB=4,延长EF交BC的延长线于点G,求BG的长23.(8分)如图,在平面直角坐标系中,抛物线与轴交于两点,点.(1)当时,求抛物线的顶点坐标及线段的长度;(2)若点关于点的对称点恰好也落在抛物线上,求的值.24.(8分)解方程组:.25.(10分)一个不透明的口袋里装着分别标有数字,,0,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率;(2)从中任取一球,将球上的数字记为,然后把小球放回;再任取一球,将球上的数字记为,试用画树状图(或列表法)表示出点所有可能的结果,并求点在直线上的概率.26.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
参考答案一、选择题(每小题3分,共30分)1、C【分析】先把从方程的右边移到左边,并把两边都除以4化简,然后用因式分解法求解即可.【题目详解】∵,∴,∴,∴,∴,.故选C.【题目点拨】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.2、B【分析】如图所示,作CD⊥x轴于点D,根据AB=AC,证明△BAO≌△CAD(AAS),根据一次函数解析式表达出BO=CD=2,OA=AD=,从而表达出点C的坐标,代入反比例函数解析式即可解答.【题目详解】解:如图所示,作CD⊥x轴于点D,∴∠CDA=∠BOA=90°,∵∠BAO=∠CAD,AB=AC,∴△BAO≌△CAD(AAS),∴BO=CD,对于一次函数y=kx-2,当x=0时,y=-2,当y=0时,x=,∴BO=CD=2,OA=AD=,∴OD=∴点C(,2),∵点C在反比例函数的图象上,∴,解得k=2,故选:B.【题目点拨】本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数图象上点的坐标特征,难度适中.表达出C点的坐标是解题的关键.3、A【解题分析】设斜坡的铅直高度为3x,水平距离为4x,然后根据勾股定理求解即可.【题目详解】设斜坡的铅直高度为3x,水平距离为4x,由勾股定理得9x2+16x2=100,∴x=2,∴3x=6m.故选A.【题目点拨】此题主要考查坡度坡角及勾股定理的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.4、C【解题分析】试题分析:先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,根据题意可列方程:x(x-1)=182,故选C.考点:本题考查的是根据实际问题列一元二次方程点评:找到关键描述语,找到等量关系,然后准确的列出方程是解答本题的关键.5、A【分析】根据圆的相关知识和性质对每个选项进行判断,即可得到答案.【题目详解】解:在同圆或等圆中,相等的弦所对的弧相等;故①错误;在同圆或等圆中,相等的弦所对的圆心角相等;故②错误;在同圆或等圆中,长度相等的弧是等弧;故③错误;在同圆或等圆中,相等的弦所对的圆周角相等;故④错误;在同圆或等圆中,圆周角越大所对的弧越长;故⑤错误;等弧所对的圆心角相等;故⑥正确;∴说法正确的有1个;故选:A.【题目点拨】本题考查了弧,弦,圆心角,圆周角定理,要求学生对基本的概念定理有透彻的理解,解题的关键是熟练掌握所学性质定理.6、B【分析】判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.关于x的一元二次方程kx2+3x-1=1有实数根,则△=b2-4ac≥1.【题目详解】解:∵a=k,b=3,c=-1,
∴△=b2-4ac=32+4×k×1=9+4k≥1,,
∵k是二次项系数不能为1,k≠1,
即且k≠1.
故选:B.【题目点拨】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.7、B【分析】根据位似图形的定义(如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.)分别对①②④进行判断,根据相似多边形的面积比等于相似比的平方,周长比等于相似比对③进行判断.【题目详解】解:①位似图形都相似,故该选项正确;②两个等边三角形不一定是位似图形,故该选项错误;③两个相似多边形的面积比为5:1.则周长的比为,故该选项错误;④两个大小不相等的圆一定是位似图形,故该选项正确.正确的是①和④,有两个,故选:B【题目点拨】本题考查的是位似图形、相似多边形性质,掌握位似图形的定义、相似多边形的性质定理是解决此题的关键.8、D【解题分析】分析:根据一元二次方程根的判别式进行计算即可.详解:根据一元二次方程一元二次方程有两个实数根,解得:,根据二次项系数可得:故选D.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.9、D【分析】由“SAS”可证△DAE≌△BAG,可得BG=DE,即可判断①;设点DE与AB交于点P,由∠ADE=∠ABG,∠DPA=∠BPO,即可判断②;过点A作AM⊥DE,AN⊥BG,易证DE×AM=×BG×AN,从而得AM=AN,进而即可判断③;过点G作GH⊥AD,过点E作EQ⊥AD,由“AAS”可证△AEQ≌△GAH,可得AQ=GH,可得S△ADG=S△ABE,即可判断④.【题目详解】∵∠DAB=∠EAG=90°,∴∠DAE=∠BAG,又∵AD=AB,AG=AE,∴△DAE≌△BAG(SAS),∴BG=DE,∠ADE=∠ABG,故①符合题意,如图1,设点DE与AB交于点P,∵∠ADE=∠ABG,∠DPA=∠BPO,∴∠DAP=∠BOP=90°,∴BG⊥DE,故②符合题意,如图1,过点A作AM⊥DE,AN⊥BG,∵△DAE≌△BAG,∴S△DAE=S△BAG,∴DE×AM=×BG×AN,又∵DE=BG,∴AM=AN,且AM⊥DE,AN⊥BG,∴AO平分∠DOG,∴∠AOD=∠AOG,故③符合题意,如图2,过点G作GH⊥AD交DA的延长线于点H,过点E作EQ⊥AD交DA的延长线于点Q,∴∠EAQ+∠AEQ=90°,∠EAQ+∠GAQ=90°,∴∠AEQ=∠GAQ,又∵AE=AG,∠EQA=∠AHG=90°,∴△AEQ≌△GAH(AAS)∴AQ=GH,∴AD×GH=AB×AQ,∴S△ADG=S△ABE,故④符合题意,故选:D.【题目点拨】本题主要考查正方形的性质和三角形全等的判定和性质的综合,添加辅助线,构造全等三角形,是解题的关键.10、B【分析】分别求出四个选项中每一个方程的根,即可判断求解.【题目详解】A、(x+1)2=0的根是:x1=x2=-1,不符合题意;B、(x-1)2=0的根是:x1=x2=-1,符合题意;C、x2=1的根是:x1=1,x2=-1,不符合题意;D、x2+1=0没有实数根,不符合题意;故选B.二、填空题(每小题3分,共24分)11、【解题分析】先由得出,再根据平行线分线段成比例定理即可得到结论.【题目详解】∵,∴,∵a∥b∥c,∴=.故答案为:.【题目点拨】本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.12、【解题分析】根据折叠的性质求出四边形BFDG是菱形,假设DF=BF=x,∴AF=AD﹣DF=8﹣x,根据在直角△ABF中,AB2+AF2=BF2,即可求解.【题目详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵折叠,∴∠DBC=∠DBF,故∠ADB=∠DBF∴DF=BF,∴四边形BFDG是菱形;∵AB=6,AD=8,∴BD=1.∴OB=BD=2.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,解得x=,即DG=BF=,故答案为:【题目点拨】此题主要考查矩形的折叠性质,解题的关键是熟知菱形的判定与性质及勾股定理的应用.13、【分析】利用反比例函数k的几何意义得出a-b=4•OE,a-b=5•OF,求出=6,即可求出答案.【题目详解】如图,∵由题意知:a-b=4•OE,a-b=5•OF,∴OE=,OF=,又∵OE+OF=6,∴=6,∴a-b=,故答案为:.【题目点拨】本题考查了反比例函数图象上点的坐标特征,能求出方程=6是解此题的关键.14、【分析】连接CE,过点B作BH⊥CD交CD的延长线于点H,可证四边形ACHB是矩形,可得AC=BH,AB=CH,由垂直平分线的性质可得BE=CE,CD=BD,可证CE=BE=CD=DB,通过证明Rt△ACE≌Rt△HBD,可得AE=DH,通过证明△ACD∽△DHB,可得AC2=AE•BE,由勾股定理可得BE2﹣AE2=AC2,可得关于BE,AE的方程,即可求解.【题目详解】解:连接CE,过点B作BH⊥CD交CD的延长线于点H,∵AC是半圆的切线∴AC⊥AB,∵CD∥AB,∴AC⊥CD,且BH⊥CD,AC⊥AB,∴四边形ACHB是矩形,∴AC=BH,AB=CH,∵DE垂直平分BC,∴BE=CE,CD=BD,且DE⊥BC,∴∠BED=∠CED,∵AB∥CD,∴∠BED=∠CDE=∠CED,∴CE=CD,∴CE=BE=CD=DB,∵AC=BH,CE=BD,∴Rt△ACE≌Rt△HBD(HL)∴AE=DH,∵CE2﹣AE2=AC2,∴BE2﹣AE2=AC2,∵AB是直径,∴∠ADB=90°,∴∠ADC+∠BDH=90°,且∠ADC+∠CAD=90°,∴∠CAD=∠BDH,且∠ACD=∠BHD,∴△ACD∽△DHB,∴,∴AC2=AE•BE,∴BE2﹣AE2=AE•BE,∴BE=AE,∴故答案为:.【题目点拨】本题考察垂直平分线的性质、矩形的性质和相似三角形,解题关键是连接CE,过点B作BH⊥CD交CD的延长线于点H,证明出四边形ACHB是矩形.15、2.3【解题分析】AB是Rt△ABC的斜边,这个直角三角形中,已知一边和一锐角,满足解直角三角形的条件,可求出AB的长.【题目详解】在Rt△ABC中,∴∴即斜坡AB的长为2.3m.故答案为2.3.【题目点拨】考查解直角三角形的实际应用,熟练掌握锐角三角函数是解题的关键.16、16:25【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【题目详解】解:∵两个相似三角形的相似比为:,∴这两个三角形的面积比;故答案为:∶.【题目点拨】本题考查了相似三角形性质,解题的关键是熟记相似三角形的性质.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.17、【分析】根据分式有意义,分母不等于0列式计算即可得解.【题目详解】由题意得,x+1≠0,解得x≠−1.故答案为x≠−1.【题目点拨】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18、【分析】需要三步完成,所以采用树状图法比较简单,根据树状图可以求得所有等可能的结果与出现三次正面朝上的情况,再根据概率公式求解即可.【题目详解】画树状图得:∴一共有共8种等可能的结果;出现3次正面朝上的有1种情况.∴出现3次正面朝上的概率是故答案为.点评:此题考查了树状图法概率.注意树状图法可以不重不漏地表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共66分)19、见解析.【分析】根据等腰三角形的三线合一可得BH=HC,结合已知条件,从而得出四边形EBFC是平行四边形,再根据得出四边形EBFC是菱形.【题目详解】证明:,,∴四边形EBFC是平行四边形又,∴四边形EBFC是菱形.【题目点拨】本题考查了菱形的判定和性质,以及等腰三角形的性质,熟练掌握相关的知识是解题的关键.20、每轮传染中平均一个人传染了13个人.【分析】设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有196人患了流感,列方程求解.【题目详解】设每轮传染中平均一个人传染了个人,则,即:则,解得:(不合题意,舍去)答:每轮传染中平均一个人传染了13个人.【题目点拨】此题考查了一元二次方程的应用,读懂题意,准确找到等量关系列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.21、;【分析】(1)由题意直接根据概率公式即可求解;(2)利用列表法展示所有9种等可能性结果,再找出小琴和小江诵读两个不同材料的结果数,然后根据概率公式求解.【题目详解】解:小琴诵读《论语》的概率=;故答案为.方法一,列表如下小琴小江共有种等可能情况,两人选中不同材料的有种,所以概率为(选中不同材料)方法二,画树状图如下共有种等可能情况,两人选中不同材料的有种,所以概率为(选中不同材料).【题目点拨】本题考查列表法与树状图法即利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1)详见解析;(2)1【分析】(1)由正方形的性质得出∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,证出∠ABE=∠DEF,即可得出△ABE∽△DEF;(2)求出DF=1,CF=3,由相似三角形的性质得出,解得DE=2,证明△EDF∽△GCF,得出,求出CG=6,即可得出答案.【题目详解】(1)证明:∵四边形ABCD为正方形,∴∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,∵∠BEF=90°,∵∠AEB+∠EBA=∠DEF+∠EBA=90°,∴∠ABE=∠DEF,∴△ABE∽△DEF;(2)解:∵AB=BC=CD=AD=4,CF=3FD,∴DF=1,CF=3,∵△ABE∽△DEF,∴,即,解得:DE=2,∵AD∥BC,∴△EDF∽△GCF,∴,即,∴CG=6,∴BG=BC+CG=4+6=1.【题目点拨】本题考查了相似三角形的判定及性质、正方形的性质,掌握相似三角形的判定和性质是解题的关键.23、(1)顶点坐标为(3,9),OA=6;(2)m=2【解题分析】(1)把m代入抛物线,根据二次函数的图像与性质即可求出顶点,与x轴的交点,即可求解;(2)先用含m的式子表示A点坐标,再根据对称性得到A’的坐标,再代入抛物线即可求出m的值.【题目详解】解:(1)当y=0时,,即O(0,0),A(6,0)∴OA=6把x=3代入y=-32+69∴顶点坐标为(3,9)(2)当y=0时,,即A(m,0)∵点A关于点B的对称点A′∴A′(-m,-8)把A′(-m,-8)代入得m1=2,m2=-2(舍去)∴m=2.【题目点拨】此题主要考查二次函数的图像与性质,解题的关键是熟知坐标的对称性.24、【分析】方程组利用加减消元法求出解即可.【题目详解】解:,①﹣②×4得:11y=﹣11,即y=﹣1,把y=﹣1代入②得:x=2,则方程组的解为.【题目点拨】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法的运用.25、(1)所抽取的数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古建筑修缮渣土转运协议
- 休闲度假村渣土清运协议书
- 宠物美容院装修贷款协议
- 山石开采运输合作协议
- 医院专用电梯运输合同
- 服装物流装卸合同
- 建筑材料临时配送协议
- 体育馆用水配送协议
- 商业步行街装修合同解除
- 博物馆阳台整修合同
- 外科休克教案课程
- 运动员技术等级称号申请表
- 6米满堂脚手架搭设方案
- 南开《数据科学导论》20春期末考核答案
- SL/T212-2020 水工预应力锚固技术规范_(高清-有效)
- 小学四年级中华优秀传统文化教案小学四年级山东友谊出版社
- 英语主格宾格所有格一览表
- 《龟兔赛跑》PPT课件.ppt
- 儿科危急值项目及评价报告制度
- 【学案】 Unit 1 Grammar Predicative clauses 学案-人教版(2019)选择性必修第二册
- 工程咨询收费标准国家计委1283号文
评论
0/150
提交评论