版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省商丘市五校联考2024届数学九年级第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,抛物线与轴交于点,对称轴为,则下列结论中正确的是()A.B.当时,随的增大而增大C.D.是一元二次方程的一个根2.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2 B.2π C.4 D.4π3.方程的根是()A.-1 B.0 C.-1和2 D.1和24.下列说法正确的是()A.等弧所对的圆心角相等B.三角形的外心到这个三角形的三边距离相等C.经过三点可以作一个圆D.相等的圆心角所对的弧相等5.sin30°的值为()A. B. C.1 D.6.如图.已知的半径为3,,点为上一动点.以为边作等边,则线段的长的最大值为()A.9 B.11 C.12 D.147.对于一个圆柱的三种视图,小明同学求出其中两种视图的面积分别为6和10,则该圆柱第三种视图的面积为()A.6 B.10 C.4 D.6或108.如图示,二次函数的图像与轴交于坐标原点和,若关于的方程(为实数)在的范围内有解,则的取值范围是()A. B. C. D.9.如图,已知AD∥BE∥CF,那么下列结论不成立的是()A. B. C. D.10.已知正方形的边长为4cm,则其对角线长是()A.8cm B.16cm C.32cm D.cm二、填空题(每小题3分,共24分)11.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为_______________________12.一张等腰三角形纸片,底边长为15,底边上的高为22.5,现沿底边依次从下往上裁剪宽度均为3的矩形纸条,如图,已知剪得的纸条中有一张是正方形(正方形),则这张正方形纸条是第________张.13.双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是14.已知点,在函数的图象上,则的大小关系是________15.若m是方程5x2﹣3x﹣1=0的一个根,则15m﹣+2010的值为_____.16.圆锥的底面半径是4cm,母线长是6cm,则圆锥的侧面积是______cm2(结果保留π).17.如图,,如果,那么_________________.18.将抛物线向下平移个单位,那么所得抛物线的函数关系是________.三、解答题(共66分)19.(10分)已知的半径长为,弦与弦平行,,,求间的距离.20.(6分)如图,在ABC中,AC=BC,∠ACB=120°,点D是AB边上一点,连接CD,以CD为边作等边CDE.(1)如图1,若∠CDB=45°,AB=6,求等边CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG⊥AC于点G.①求证:CF⊥DF;②如图3,将CFD沿CF翻折得CF,连接B,直接写出的最小值.21.(6分)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.22.(8分)某电子厂商投产一种新型电子产品,每件制造成本为16元,每月销售量y(万件)与销售单价x(元)之间的函数关系如下表格所示:销售单价x(元)…25303540…每月销售量y(万件)…50403020…(1)求每月的利润W(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的总利润为480万元?(3)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?23.(8分)已知关于x的一元二次方程(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为1.当△ABC是等腰三角形时,求k的值24.(8分)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠形风筝进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请解答以下问题:(1)用表达式表示蝙蝠形风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?25.(10分)课本上有如下两个命题:命题1:圆的内接四边形的对角互补.命题2:如果一个四边形两组对角互补,那么该四边形的四个顶点在同一个圆上.请判断这两个命题的真、假?并选择其中一个说明理由.26.(10分)如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:(1)△ABP≌△AEQ;(2)EF=BF
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.【题目详解】A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;B、当x>1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;D、∵抛物线与x轴的一个交点坐标是(−1,0),对称轴是x=1,设另一交点为(x,0),−1+x=2×1,x=3,∴另一交点坐标是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一个根,故本选项正确.故选:D.【题目点拨】本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.2、B【解题分析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【题目详解】∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=AB2+AC2=42,∠ACB=∠∴阴影部分的面积=45π·(42)故选B.【题目点拨】本题考查了扇形面积公式的应用,观察图形得到阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积)是解决问题的关键.3、C【分析】用因式分解法课求得【题目详解】解:,,解得故选C【题目点拨】本题考查了用因式分解求一元二次方程.4、A【解题分析】试题分析:A.等弧所对的圆心角相等,所以A选项正确;B.三角形的外心到这个三角形的三个顶点的距离相等,所以B选项错误;C.经过不共线的三点可以作一个圆,所以C选项错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,所以D选项错误.故选C.考点:1.确定圆的条件;2.圆心角、弧、弦的关系;3.三角形的外接圆与外心.5、B【分析】直接根据特殊角的三角函数值进行选择.【题目详解】sin30°=,故选:B.【题目点拨】此题考查特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.6、B【分析】以OP为边向下作等边△POH,连接AH,根据等边三角形的性质通过“边角边”证明△HPA≌△OPM,则AH=OM,然后根据AH≤OH+AO即可得解.【题目详解】解:如图,以OP为边向下作等边△POH,连接AH,∵△POH,△PAM都是等边三角形,∴PH=PO,PA=PM,∠PHO=∠APM=60°,∴∠HPA=∠OPM,∴△HPA≌△OPM(SAS),∴AH=OM,∵AH≤OH+AO,即AH≤11,∴AH的最大值为11,则OM的最大值为11.故选B.【题目点拨】本题主要考查等边三角形的性质,全等三角形的判定与性质等,解此题的关键在于熟练掌握其知识点,难点在于作辅助线构造等边三角形.7、D【分析】一个圆柱的三视图是圆和长方形,所以另外一种视图也是同样的长方形.【题目详解】一个圆柱的三视图是圆和长方形,所以另外一种视图也是同样的长方形,如果视图是长方形的面积是6,另外一种视图的面积也是6,如果视图是长方形的面积是10,另外一种视图的面积也是10.故选:D【题目点拨】考核知识点:三视图.理解圆柱体三视图特点是关键.8、D【分析】首先将代入二次函数,求出,然后利用根的判别式和求根公式即可判定的取值范围.【题目详解】将代入二次函数,得∴∴方程为∴∵∴故答案为D.【题目点拨】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.9、D【分析】根据平行线分线段成比例定理列出比例式,判断即可.【题目详解】∵AD∥BE∥CF,∴,成立;,成立,故D错误,成立,故选D.【题目点拨】本题考查的是平行线分线段成比例定理,灵活运用定理,找准对应关系是解题的关键.10、D【分析】作一个边长为4cm的正方形,连接对角线,构成一个直角三角形如下图所示:由勾股定理得AC2=AB2+BC2,求出AC的值即可.【题目详解】解:如图所示:四边形ABCD是边长为4cm的正方形,在Rt△ABC中,由勾股定理得:AC==4cm.所以对角线的长:AC=4cm.故选D.二、填空题(每小题3分,共24分)11、3【分析】根据解析式求出A、B、C三点的坐标,即△ABC的底和高求出,然后根据公式求面积.【题目详解】根据题意可得:A点的坐标为(1,0),B点的坐标为(3,0),C点的坐标为(0,3),则AB=2,所以三角形的面积=2×3÷2=3.考点:二次函数与x轴、y轴的交点.12、6【分析】设第x张为正方形纸条,由已知可知,根据相似三角形的性质有,从而可计算出x的值.【题目详解】如图,设第x张为正方形纸条,则∵∴∴即解得故答案为6【题目点拨】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.13、y2=.【分析】根据,过y1上的任意一点A,得出△CAO的面积为2,进而得出△CBO面积为3,即可得出y2的解析式.【题目详解】解:∵,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,S△AOB=1,∴△CBO面积为3,∴xy=6,∴y2的解析式是:y2=.故答案为:y2=.14、【分析】把横坐标分别代入关系式求出纵坐标,再比较大小即可.【题目详解】∵A(3,y1),B(5,y2)在函数的图象上,∴,,∴y1>y2.【题目点拨】本题考查反比例函数,掌握反比例函数图象上点的坐标特征是解题的关键.15、1【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【题目详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣=3,∴15m﹣+2010=3(5m﹣)+2010=9+2010=1,故答案为:1.【题目点拨】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.16、24π【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【题目详解】解:∵圆锥的底面半径为4cm,
∴圆锥的底面圆的周长=2π•4=8π,
∴圆锥的侧面积=×8π×6=24π(cm2).
故答案为:24π.【题目点拨】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).17、【分析】根据平行线分线段成比例定理解答即可.【题目详解】解:∵,∴,即,解得:.故答案为:.【题目点拨】本题考查的是平行线分线段成比例定理,属于基本题型,熟练掌握该定理是解题关键.18、【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的坐标规律写出平移后顶点坐标,然后利用顶点式写出平移后的抛物线解析式.【题目详解】解:的顶点坐标为,把点向下平移个单位得到的对应点的坐标为,所以平移后的抛物线的解析式是.故答案为:.【题目点拨】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.三、解答题(共66分)19、1或7【分析】先根据勾股定理求出OF=4,OE=3,再分AB、CD在点O的同侧时,AB、CD在点O的两侧时两种情况分别计算求出EF即可.【题目详解】如图,过点O作OE⊥CD于E,交AB于点F,∵,∴OE⊥AB,在Rt△AOF中,OA=5,AF=AB=3,∴OF=4,在Rt△COE中,OC=5,CE=CD=4,∴OE=3,当AB、CD在点O的同侧时,、间的距离EF=OF-OE=4-3=1;当AB、CD在点O的两侧时,AB、CD间的距离EF=OE+OF=3+4=7,故答案为:1或7.【题目点拨】此题考查了圆的垂径定理,勾股定理,在圆中通常利用垂径定理和勾股定理求半径、弦的一半、弦心距三者中的一个量.20、(1);(2)①证明见解析;②.【分析】(1)过点C作CH⊥AB于点H,由等腰三角形的性质和直角三角形的性质可得∠A=∠B=30°,AH=BH=3,CH==,由∠CDB=45°,可得CD=CH=;(2)①延长BC到N,使CN=BC,由“SAS”可证CEN≌CDA,可得EN=AD,∠N=∠A=30°,由三角形中位线定理可得CF∥EN,CF=EN,可得∠BCF=∠N=30°,可证DG=CF,DG∥CF,即可证四边形CFDG是矩形,可得结论;②由“SAS”可证EFD≌BF,可得B=DE,则当CD取最小值时,有最小值,即可求解.【题目详解】解:(1)如图1,过点C作CH⊥AB于点H,∵AC=BC,∠ACB=120°,CH⊥AB,∴∠A=∠B=30°,AH=BH=3,在RtBCH中,tan∠B=,∴tan30°=∴CH==,∵∠CDH=45°,CH⊥AB,∴∠CDH=∠DCH=45°,∴DH=CH=,CD=CH=;(2)①如图2,延长BC到N,使CN=BC,∵AC=BC,∠ACB=120°,∴∠A=∠ABC=30°,∠NCA=60°,∵ECD是等边三角形,∴EC=CD,∠ECD=60°,∴∠NCA=∠ECD,∴∠NCE=∠DCA,又∵CE=CD,AC=BC=CN,∴CEN≌CDA(SAS),∴EN=AD,∠N=∠A=30°,∵BC=CN,BF=EF,∴CF∥EN,CF=EN,∴∠BCF=∠N=30°,∴∠ACF=∠ACB﹣∠BCF=90°,又∵DG⊥AC,∴CF∥DG,∵∠A=30°,DG⊥AC,∴DG=AD,∴DG=CF,∴四边形CFDG是平行四边形,又∵∠ACF=90°,∴四边形CFDG是矩形,∴∠CFD=90°∴CF⊥DF;②如图3,连接B,∵将CFD沿CF翻折得CF,∴CD=C,DF=F,∠CFD=∠CF=90°,又∵EF=BF,∠EFD=∠BF,∴EFD≌BF(SAS),∴B=DE,∴B=CD,∵当B取最小值时,有最小值,∴当CD取最小值时,有最小值,∵当CD⊥AB时,CD有最小值,∴AD=CD,AB=2AD=2CD,∴最小值=.【题目点拨】本题是几何变换综合题,考查了全等三角形的判定和性质,矩形的判定和性质,等腰三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.21、(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立【分析】(1)根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC=90°.【题目详解】解:(1)在Rt△EBC中,M是斜边EC的中点,∴.在Rt△EDC中,M是斜边EC的中点,∴.∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.∴∠BMD=2∠ACB=90°,即BM⊥DM.(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.证明:连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H.∵DM=MF,EM=MC,∴四边形CDEF为平行四边形,∴DE∥CF,ED=CF,∵ED=AD,∴AD=CF,∵DE∥CF,∴∠AHE=∠ACF.∵,,∴∠BAD=∠BCF,又∵AB=BC,∴△ABD≌△CBF,∴BD=BF,∠ABD=∠CBF,∵∠ABD+∠DBC=∠CBF+∠DBC,∴∠DBF=∠ABC=90°.在Rt△中,由,,得BM=DM且BM⊥DM.【题目点拨】本题主要考查的是平行四边形的判定与性质、三角形全等、直角三角形的性质,综合性比较强.本题解题的关键是通过构建全等三角形来得出线段相等,然后根据线段相等得出所求的结论.22、(1);(2)26元或40元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.【分析】(1)先根据表格求出y与x之间的函数关系式,再根据“利润(单价单件成本)销售量”即可得;(2)令代入(1)的结论求出x的值即可得;(3)先根据“制造成本不超过480万元”求出y的取值范围,从而可得x的取值范围,再利用二次函数的性质求解即可得.【题目详解】(1)由表格可知,y与x之间的函数关系是一次函数,设y与x之间的函数关系式为,将和代入得:,解得,则y与x之间的函数关系式为,因此,,即;(2)由题意得:,整理得:,解得或,答:当销售单价为26元或40元时,厂商每月获得的总利润为480万元;(3)由题意得:,则,解得,将二次函数化成顶点式为,由二次函数的性质可知,在范围内,随x的增大而减小,则当时,取得最大值,最大值为(万元),答:当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.【题目点拨】本题考查了利用待定系数法求一次函数的解析式、二次函数的性质、解一元二次方程、解一元一次不等式组等知识点,较难的是题(3),熟练掌握二次函数的性质是解题关键.23、(5)详见解析(4)或【分析】(5)先计算出△=5,然后根据判别式的意义即可得到结论;(4)先利用公式法求出方程的解为x5=k,x4=k+5,然后分类讨论:AB=k,AC=k+5,当AB=BC或AC=BC时△ABC为等腰三角形,然后求出k的值.【题目详解】解:(5)证明:∵△=(4k+5)4-4(k4+k)=5>0,∴方程有两个不相等的实数根;(4)解:一元二次方程x4-(4k+5)x+k4+k=0的解为x=,即x5=k,x4=k+5,∵k<k+5,∴AB≠AC.当AB=k,AC=k+5,且AB=BC时,△ABC是等腰三角形,则k=5;当AB=k,AC=k+5,且AC=BC时,△ABC是等腰三角形,则k+5=5,解得k=4,所以k的值为5或4.【题目点拨】5.根的判别式;4.解一元二次方程-因式分解法;5.三角形三边关系;4.等腰三角形的性质.24、(1)y=-10x+300(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元;(3)当售价定为20元时,王大伯获得利润最大,最大利润是2元.【解题分析】试题分析:(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据“当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个”,即可得出y关于x的函数关系式;(2)设王大伯获得的利润为W,根据“总利润=单个利润×销售量”,即可得出W关于x的函数关系式,代入W=840求出x的值,由此即可得出结论;(3)利用配方法将W关于x的函数关系式变形为W=,根据二次函数的性质即可解决最值问题.试题解析:(1)设蝙蝠型风筝
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南行政职业能力模拟42
- 江西申论模拟14
- 2024年欠款合同范本
- 2024年办公用品采购合同样本
- 2024年英文合同范文
- 2024年储运服务协议
- 2024年旷工解除劳动合同
- 2024年电脑售后服务承诺书范本
- 2024年厂房租赁合同()
- 湖南公务员面试模拟50
- 期中 (试题) -2024-2025学年译林版(三起)英语四年级上册
- 2024注册安全工程师安全生产管理-考前押题卷
- SL/T212-2020 水工预应力锚固技术规范_(高清-有效)
- 小学四年级中华优秀传统文化教案小学四年级山东友谊出版社
- 英语主格宾格所有格一览表
- 《龟兔赛跑》PPT课件.ppt
- 儿科危急值项目及评价报告制度
- 【学案】 Unit 1 Grammar Predicative clauses 学案-人教版(2019)选择性必修第二册
- 工程咨询收费标准国家计委1283号文
- 5-10万山平塘设计报告
- 职业卫生警示标志
评论
0/150
提交评论