




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市南开实验学校2024届九年级数学第一学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,圆锥的底面半径OB=6cm,高OC=8cm.则这个圆锥的侧面积是()A.30cm2 B.30πcm2 C.60πcm2 D.120cm22.如图,已知点A(m,m+3),点B(n,n﹣3)是反比例函数y=(k>0)在第一象限的图象上的两点,连接AB.将直线AB向下平移3个单位得到直线l,在直线l上任取一点C,则△ABC的面积为()A. B.6 C. D.93.已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()A. B. C. D.4.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.2.4 C.4.8 D.55.反比例函数的图象如图所示,以下结论:①常数m<-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是A.①② B.②③ C.③④ D.①④6.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5° B.15° C.20° D.22.5°7.如图,在中,点C为弧AB的中点,若(为锐角),则()A. B. C. D.8.已知是一元二次方程的一个解,则m的值是A.1 B. C.2 D.9.把方程x(x+2)=5(x-2)化成一般式,则a、b、c的值分别是()A.1,-3,10 B.1,7,-10 C.1,-5,12 D.1,3,210.关于反比例函数y=﹣,下列说法错误的是()A.图象经过点(1,﹣3)B.图象分布在第一、三象限C.图象关于原点对称D.图象与坐标轴没有交点11.如图所示,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴于点A,点C在函数y=(x>0)的图象上,若OA=1,则k的值为()A.4 B.2 C.2 D.12.若关于的方程有实数根,则的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩的方差为1.2,乙的成绩的方差为3.9,由此可知_____的成绩更稳定.14.已知,则___________.15.一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是__________L.16.已知a=3+2,b=3-2,则a2b+ab2=_________.17.正六边形的边长为6,则该正六边形的面积是______________.18.若方程的一个根,则的值是__________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=,点E、F分别是线段AD、AC上的动点,(点E不与点A,D重合),且∠CEF=∠ACB.(1)求AC的长和点D的坐标;(2)求证:;(3)当△EFC为等腰三角形时,求点E的坐标.20.(8分)在平面直角坐标系中,点为坐标原点,一次函数的图象与反比例函数的图象交于两点,若,点的横坐标为-2.(1)求反比例函数及一次函数的解析式;(2)若一次函数的图象交轴于点,过点作轴的垂线交反比例函数图象于点,连接,求的面积.21.(8分)已知关于x的一元二次方程x2-2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条件下,方程的实数根是、,求代数式的值.22.(10分)在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.①当时,请直接写出“W区域”内的整点个数;②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.23.(10分)今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.24.(10分)如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里∕小时的速度向西北方向航行,我渔政船立即沿北偏东60º方向航行,1.5小时后,在我领海区域的C处截获可疑渔船.问我渔政船的航行路程是多少海里?(结果保留根号)25.(12分)如图,已知一次函数与反比例函数的图像相交于点,与轴相交于点.(1)求的值和的值以及点的坐标;(2)观察反比例函数的图像,当时,请直接写出自变量的取值范围;(3)以为边作菱形,使点在轴正半轴上,点在第一象限,求点的坐标;(4)在y轴上是否存在点,使的值最小?若存在,请求出点的坐标;若不存在,请说明理由.26.如图,是⊙的直径,、是圆周上的点,,弦交于点.(1)求证:;(2)若,求的度数.
参考答案一、选择题(每题4分,共48分)1、C【题目详解】解:由勾股定理计算出圆锥的母线长=,圆锥漏斗的侧面积=.故选C.考点:圆锥的计算2、A【分析】由点A(m,m+3),点B(n,n﹣3)在反比例函数y=(k>0)第一象限的图象上,可得到m、n之间的关系,过点A、B分别作x轴、y轴的平行线,构造直角三角形,可求出直角三角形的直角边的长,由平移可得直角三角形的直角顶点在直线l上,进而将问题转化为求△ADB的面积.【题目详解】解:∵点A(m,m+3),点B(n,n﹣3)在反比例函数y=(k>0)第一象限的图象上,∴k=m(m+3)=n(n﹣3),即:(m+n)(m﹣n+3)=0,∵m+n>0,∴m﹣n+3=0,即:m﹣n=﹣3,过点A、B分别作x轴、y轴的平行线相交于点D,∴BD=xB﹣xA=n﹣m=3,AD=yA﹣yB=m+3﹣(n﹣3)=m﹣n+6=3,又∵直线l是由直线AB向下平移3个单位得到的,∴平移后点A与点D重合,因此,点D在直线l上,∴S△ACB=S△ADB=AD•BD=,故选:A.【题目点拨】本题主要考察反比例函数与一次函数的交点问题,解题关键是熟练掌握计算法则.3、D【解题分析】先写出三角形底边a上的高h与底边a之间的函数关系,再根据反比例函数的图象特点得出.【题目详解】解:已知三角形的面积s一定,
则它底边a上的高h与底边a之间的函数关系为S=ah,即;
该函数是反比例函数,且2s>0,h>0;
故其图象只在第一象限.
故选:D.【题目点拨】本题考查反比例函数的图象特点:反比例函数的图象是双曲线,与坐标轴无交点,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.4、C【分析】连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.【题目详解】连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴∴∵AC=6,∴AO=3,∴∴DB=8,∴菱形ABCD的面积是∴BC⋅AE=24,故选C.5、C【解题分析】分析:因为函数图象在一、三象限,故有m>0,故①错误;在每个象限内,y随x的增大而减小,故②错;对于③,将A、B坐标代入,得:h=-m,,因为m>0,所以,h<k,故③正确;函数图象关于原点对称,故④正确.因此,正确的是③④.故选C.6、B【题目详解】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°故选:B7、B【分析】连接BD,如图,由于点C为弧AB的中点,根据圆周角定理得到∠BDC=∠ADC=α,然后根据圆内接四边形的对角互补可用α表示出∠APB.【题目详解】解:连接BD,如图,∵点C为弧AB的中点,∴弧AC=弧BC,∴∠BDC=∠ADC=α,∴∠ADB=2α,∵∠APB+∠ADB=180°,∴∠APB=180°-2α.故选:B.【题目点拨】本题考查了弧、弦、圆心角的关系,以及圆内接四边形的性质,熟练掌握圆的性质定理是解答本题的关键.8、A【解题分析】把x=1代入方程x2+mx﹣2=0得到关于m的一元一次方程,解之即可.【题目详解】把x=1代入方程x2+mx﹣2=0得:1+m﹣2=0,解得:m=1.故选A.【题目点拨】本题考查了一元二次方程的解,正确掌握一元二次方程的解的概念是解题的关键.9、A【分析】方程整理为一般形式,找出常数项即可.【题目详解】方程整理得:x2−3x+10=0,则a=1,b=−3,c=10.故答案选A.【题目点拨】本题考查了一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的每种形式.10、B【解题分析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.根据反比例函数的性质并结合其对称性对各选项进行判断.【题目详解】A、把点(1,﹣3)代入函数解析式,﹣3=﹣3,故本选项正确,不符合题意,B、∵k=﹣2<0,∴图象位于二、四象限,且在每个象限内,y随x的增大而增大,故本选项错误,符合题意,C、反比例函数的图象可知,图象关于原点对称,故本选项正确,不符合题意D、∵x、y均不能为0,故图象与坐标轴没有交点,故本选项正确,不符合题意.故选:B.【题目点拨】本题主要考查的是反比例函数的性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11、C【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=1BD,再证得四边形OADB是矩形,利用AC⊥x轴得到C(1,1),然后根据反比例函数图象上点的坐标特征计算k的值.【题目详解】解:作BD⊥AC于D,如图,∵ABC为等腰直角三角形,∴BD是AC的中线,∴AC=1BD,∵CA⊥x轴于点A,∵AC⊥x轴,BD⊥AC,∠AOB=90°,∴四边形OADB是矩形,∴BD=OA=1,∴AC=1,∴C(1,1),把C(1,1)代入y=得k=1×1=1.故选:C.【题目点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.12、D【分析】用直接开平方法解方程,然后根据平方根的意义求得m的取值范围.【题目详解】解:∵关于的方程有实数根∴故选:D【题目点拨】本题考查直接开平方法解方程,注意负数没有平方根是本题的解题关键.二、填空题(每题4分,共24分)13、甲【分析】根据方差的定义,方差越小数据越稳定.【题目详解】解:因为S甲2=1.2<S乙2=3.9,方差小的为甲,所以本题中成绩比较稳定的是甲.故答案为甲;【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14、【分析】根据比例式设a=2k,b=5k,代入求值即可解题.【题目详解】解:∵,设a=2k,b=5k,∴【题目点拨】本题考查了比例的性质,属于简单题,设k法是解题关键.15、1【分析】设每次倒出液体xL,第一次倒出后还有纯药液(40﹣x),药液的浓度为,再倒出xL后,倒出纯药液•x,利用40﹣x﹣•x就是剩下的纯药液10L,进而可得方程.【题目详解】解:设每次倒出液体xL,由题意得:40﹣x﹣•x=10,解得:x=60(舍去)或x=1.答:每次倒出1升.故答案为1.【题目点拨】本题考查一元二次方程的应用.16、6【解题分析】仔细观察题目,先对待求式提取公因式化简得ab(a+b),将a=3+2,b=3-2,代入运算即可.【题目详解】解:待求式提取公因式,得将已知代入,得故答案为6.【题目点拨】考查代数式求值,熟练掌握提取公因式法是解题的关键.17、【分析】根据题意可知边长为6的正六边形可以分成六个边长为6的正三角形,从而计算出正六边形的面积即可.【题目详解】解:连接正六变形的中心O和两个顶点D、E,得到△ODE,因为∠DOE=360°×=60°,又因为OD=OE,所以∠ODE=∠OED=(180°-60°)÷2=60°,则三角形ODE为正三角形,∴OD=OE=DE=6,∴S△ODE=OD•OE•sin60°=×6×6×=9.正六边形的面积为6×9=54.故答案为.【题目点拨】本题考查学生对正多边形的概念掌握和计算的能力,即要熟悉正六边形的性质,也要熟悉正三角形的面积公式.18、【分析】将m代入方程,再适当变形可得的值.【题目详解】解:将m代入方程得,即,所以.故答案为:2020.【题目点拨】本题考查了一元二次方程的代入求值,灵活的进行代数式的变形是解题的关键.三、解答题(共78分)19、(1)AC=20,D(12,0);(2)见解析;(3)(8,0)或(,0).【分析】(1)在Rt△ABC中,利用三角函数和勾股定理即可求出BC、AC的长度,从而得到A点坐标,由点D与点A关于y轴对称,进而得到D点的坐标;(2)欲证,只需证明△AEF与△DCE相似,只需要证明两个对应角相等即可.在△AEF与△DCE中,易知∠CAO=∠CDE,再利用三角形的外角性质证得∠AEF=∠DCE,问题即得解决;(3)当△EFC为等腰三角形时,有三种情况,需要分类讨论:①当CE=EF时,此时△AEF与△DCE相似比为1,则有AE=CD,即可求出E点坐标;②当EF=FC时,利用等腰三角形的性质和解直角三角形的知识易求得CE,再利用(2)题的结论即可求出AE的长,进而可求出E点坐标;③当CE=CF时,可得E点与D点重合,这与已知条件矛盾,故此种情况不存在.【题目详解】解:(1)∵四边形ABCO为矩形,∴∠B=90°,∵AB=16,tan∠ACB=,∴,解得:BC=12=AO,∴AC=20,A点坐标为(﹣12,0),∵点D与点A关于y轴对称,∴D(12,0);(2)∵点D与点A关于y轴对称,∴∠CAO=∠CDE,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE,∴∠AEF=∠DCE,∴△AEF∽△DCE.∴;(3)当△EFC为等腰三角形时,有以下三种情况:①当CE=EF时,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=20,∴OE=AE﹣OA=20﹣12=8,∴E(8,0);②当EF=FC时,如图1所示,过点F作FM⊥CE于M,则点M为CE中点,∴CE=2ME=2EF•cos∠CEF=2EF•cos∠ACB=.∵△AEF∽△DCE,∴,即:,解得:AE=,∴OE=AE﹣OA=,∴E(,0).③当CE=CF时,则有∠CFE=∠CEF,∵∠CEF=∠ACB=∠CAO,∴∠CFE=∠CAO,即此时F点与A点重合,E点与D点重合,这与已知条件矛盾.所以此种情况的点E不存在,综上,当△EFC为等腰三角形时,点E的坐标是(8,0)或(,0).【题目点拨】本题综合考查了矩形的性质、等腰三角形的性质、勾股定理、相似三角形的判定和性质、轴对称的性质、三角形的外角性质以及解直角三角形等知识,熟练掌握相似三角形的判定与性质是解题关键.难点在于第(3)问,当△EFC为等腰三角形时,有三种情况,需要分类讨论,注意不要漏解.20、(1),;(2)3【分析】(1)点代入,并且求出点坐标,将代入(2)【题目详解】解:(1)①②∴(2)21、(1)1;(2)1.【分析】(1)根据一元二次方程有两不相等的实数根,则根的判别式=b2-4ac>0,建立关于m的不等式,求出m的取值范围,进而得出m的最大整数值;
(2)把m=1代入x2-2x+m=0,根据根与系数的关系可得出x1+x2,x1x2的值,由=(x1+x2)2-3x1x2,最后将x1+x2,x1x2的值代入即可得出结果.【题目详解】解:(1)由题意,得>0,即>0,解得m<2,∴m的最大整数值为1;(2)把m=1代入x2-2x+m=0得,x2-2x+1=0,根据根与系数的关系得,x1+x2=2,x1x2=1,∴=(x1+x2)2-3x1x2=(2)2-3×1=1.【题目点拨】此题考查了一元二次方程根的情况与判别式的关系以及根与系数的关系.根的情况与判别式的关系如下:(1)>0⇔方程有两个不相等的实数根;(2)=0⇔方程有两个相等的实数根;(3)<0⇔方程没有实数根.根与系数的关系如下:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=-,x1x2=.22、(1)顶点P的坐标为;(2)①6个;②,.【分析】(1)由抛物线解析式直接可求;
(2)①由已知可知A(0,2),C(2+,-2),画出函数图象,观察图象可得;
②分两种情况求:当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a=,则<a≤1;当a<0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1≤a<-.【题目详解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,
∴顶点为(2,-2a);
(2)如图,①∵a=2,
∴y=2x2-8x+2,y=-2,
∴A(0,2),C(2+,-2),
∴有6个整数点;②当a>0时,抛物线定点经过(2,-2)时,a=1,
抛物线定点经过(2,-1)时,,;∴.当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,;∴.∴综上所述:,.【题目点拨】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.23、(1)y=﹣2x+340(20≤x≤40);(2)5200【解题分析】试题分析:(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.试题解析:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.考点:二次函数的应用24、我渔政船的航行路程是海里.【分析】过C点作AB的垂线,垂足为D,构建Rt△ACD,Rt△BCD,解这两个直角三角形即可.【题目详解】解:如图:作CD⊥AB于点D,∵在Rt△BCD中,BC=12×1.5=18海里,∠CBD=45°,∴CD=BC•sin45°=(海里).∴在Rt△ACD中,AC=CD÷sin30°=(海里).答:我渔政船的航行路程是海里.点睛:考查了解直角三角形的应用(方向角问题),锐角三角函数定义,特殊角的三角函数值.25、(1)n=3,k=1,点B的坐标为(2,3);(2)x≤﹣2或x>3;(3)点D的坐标为(2+,3);(2)存在,P(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 神话传说:初中美术课件设计
- 《携手共筑友谊之桥》课件
- 《综合保税区发展战略》课件
- 乘车座次课件
- 《智慧教育新视野》课件
- 《蔚来汽车的SWOT分析》课件
- 《保险课件:探讨健康险的重要性和应用》
- 《保安服务业的发展》课件
- 安徽省安庆市省示范高中联考2024-2025学年高三下学期4月模拟英语试题 含解析
- 陕西省蓝田县达标名校2025年初三TOP20十二月联考(全国Ⅰ卷)英语试题试卷含答案
- 自身免疫性脑炎
- 医院质控科工作质量考核指标
- CRPS电源设计向导 CRPS Design Guide r-2017
- GB/T 9345.1-2008塑料灰分的测定第1部分:通用方法
- GB/T 4937.22-2018半导体器件机械和气候试验方法第22部分:键合强度
- GB/T 3452.2-2007液压气动用O形橡胶密封圈第2部分:外观质量检验规范
- 煤矿从业人员安全培训考试题库(附答案)
- 第十章-国际政治与世界格局-(《政治学概论》课件)
- 2023年法律职业资格考试历年真题精选合集
- 滤毒罐使用说明书
- 如何上好一节思政课综述课件
评论
0/150
提交评论