2024届江苏省东台市第二教育联盟数学九上期末学业水平测试试题含解析_第1页
2024届江苏省东台市第二教育联盟数学九上期末学业水平测试试题含解析_第2页
2024届江苏省东台市第二教育联盟数学九上期末学业水平测试试题含解析_第3页
2024届江苏省东台市第二教育联盟数学九上期末学业水平测试试题含解析_第4页
2024届江苏省东台市第二教育联盟数学九上期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省东台市第二教育联盟数学九上期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若函数y=(3﹣m)﹣x+1是二次函数,则m的值为()A.3 B.﹣3 C.±3 D.92.抛掷一枚质地均匀的硬币,连续掷三次,出现“一次正面,两次反面”的概率为()A. B. C. D.3.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球,摸出白球的概率是()A. B. C. D.4.若点A(1,y1)、B(2,y2)都在反比例函数的图象上,则y1、y2的大小关系为A.y1<y2 B.y1≤y2 C.y1>y2 D.y1≥y25.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x

-2

-1

0

1

2

y

0

4

6

6

4

观察上表,得出下面结论:①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+C的最大值为6;③抛物线的对称轴是x=;④在对称轴左侧,y随x增大而增大.其中正确有()A.1个 B.2个 C.3个 D.4个6.使得关于的不等式组有解,且使分式方程有非负整数解的所有的整数的和是()A.-8 B.-10 C.-16 D.-187.一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些小球除颜色外都相同,其中有红球3个,黄球2个,蓝球若干,已知随机摸出一个球是红球的概率是,则随机摸出一个球是蓝球的概率是()A. B. C. D.8.下列说法中不正确的是()A.相似多边形对应边的比等于相似比B.相似多边形对应角平线的比等于相似比C.相似多边形周长的比等于相似比D.相似多边形面积的比等于相似比9.如图,正方形中,点是以为直径的半圆与对角线的交点.现随机向正方形内投掷一枚小针,则针尖落在阴影区域的概率为()A. B. C. D.10.下列实数中,有理数是()A.﹣2 B. C.﹣1 D.π二、填空题(每小题3分,共24分)11.二次函数(其中m>0),下列命题:①该图象过点(6,0);②该二次函数顶点在第三象限;③当x>3时,y随x的增大而增大;④若当x<n时,都有y随x的增大而减小,则.正确的序号是____________.12.如图,,如果,,,那么___________.13.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为.14.如图,,请补充—个条件:___________,使(只写一个答案即可).15.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为_____cm.16.已知点A(m,1)与点B(3,n)关于原点对称,则m+n=_________。17.已知a、b、c满足,a、b、c都不为0,则=_____.18.如果二次函数的图象如图所示,那么____0.(填“>”,“=”,或“<”).三、解答题(共66分)19.(10分)如图,在△ABC中,点O为BC边上一点,⊙O经过A、B两点,与BC边交于点E,点F为BE下方半圆弧上一点,FE⊥AC,垂足为D,∠BEF=2∠F.(1)求证:AC为⊙O切线.(2)若AB=5,DF=4,求⊙O半径长.20.(6分)成都市某景区经营一种新上市的纪念品,进价为20元/件,试营销阶段发现;当销售单价是30元时,每天的销售量为200件;销售单价每上涨2元,每天的销售量就减少10件.这种纪念品的销售单价为x(元).(1)试确定日销售量y(台)与销售单价为x(元)之间的函数关系式;(2)若要求每天的销售量不少于15件,且每件纪念品的利润至少为30元,则当销售单价定为多少时,该纪念品每天的销售利润最大,最大利润为多少?21.(6分)甲、乙两名同学5次数学练习(满分120分)的成绩如下表:(单位:分)测试日期11月5日11月20日12月5日12月20日1月3日甲9697100103104乙10095100105100已知甲同学这5次数学练习成绩的平均数为100分,方差为10分.(1)乙同学这5次数学练习成绩的平均数为分,方差为分;(2)甲、乙都认为自已在这5次练习中的表现比对方更出色,请你分别写出一条支持他们俩观点的理由.22.(8分)如图,,平分,且交于点,平分,且交于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.23.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.24.(8分)解方程:x2+11x+9=1.25.(10分)某小区为改善生态环境,实行生活垃圾的分类处理,将生活垃圾分成三类:厨房垃圾、可回收垃圾和其他垃圾,分别记为,并且设置了相应的垃圾箱“厨房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为.(1)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区三类垃圾箱中总共吨生活垃圾,数据统计如下图(单位:吨):请根据以上信息,估计“厨房垃圾”投放正确的概率;(2)若将三类垃圾随机投入三类垃圾箱,请用画树状图或列表格的方法求出垃圾投放正确的概率.26.(10分)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码1,2;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,则取出的两个小球上的号码恰好相同的概率是多少?

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据二次函数的定义来求解,注意二次项的系数与次数.【题目详解】根据二次函数的定义,可知

m2-7=2

,且

3-m≠0

,解得

m=-3

,所以选择B.故答案为B【题目点拨】本题考查了二次函数的定义,注意二次项的系数不能为0.2、B【分析】利用树状图分析,即可得出答案.【题目详解】共8种情况,出现“一次正面,两次反面”的情况有3种,所以概率=,故答案选择B.【题目点拨】本题考查的是求概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、A【分析】根据概率公式计算即可.【题目详解】∵盒子内装有红球1个、绿球1个、白球2个共4个球,∴出一个球,摸出白球的概率是,故选:A.【题目点拨】此题考查概率的公式,熟记概率的计算方法是解题的关键.4、C【解题分析】根据反比例函数图象的增减性进行判断:根据反比例函数的性质:当时,图象分别位于第一、三象限,在每个象限内,y随x的增大而减小;当时,图象分别位于第二、四象限,在每个象限内,y随x的增大而增大.∵反比例函数的解析式中的,∴点A(1,y1)、B(1,y1)都位于第四象限.又∵1<1,∴y1>y1.故选C.5、C【解题分析】从表中可知,抛物线过(0,6),(1,6),所以可得抛物线的对称轴是x=,故③正确.当x=-2时,y=0,根据对称性当抛物线与x轴的另一个交点坐标为x=×2+2=3.故①;当x=2时,y=4,所以在对称轴的右侧,随着x增大,y在减小,所以抛物线开口向下.故其在顶点处取得最大值,应大于6,故②错,④对.选C.6、D【分析】根据不等式组的解集的情况,得出关于m的不等式,求得m的取值范围,再解分式方程得出x,根据x是非负整数,得出m所有值的和.【题目详解】解:∵关于的不等式组有解,则,∴,又∵分式方程有非负整数解,∴为非负整数,∵,∴-10,-6,-2由,故答案选D.【题目点拨】本题考查含参数的不等式组及含参数的分式方程,能够准确解出不等式组及方程是解题的关键.7、D【分析】先求出口袋中蓝球的个数,再根据概率公式求出摸出一个球是蓝球的概率即可.【题目详解】设口袋中蓝球的个数有x个,根据题意得:=,解得:x=4,则随机摸出一个球是蓝球的概率是=;故选:D.【题目点拨】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.8、D【分析】根据相似多边形的性质判断即可.【题目详解】若两个多边形相似可知:①相似多边形对应边的比等于相似比;②相似多边形对应角平线的比等于相似比③相似多边形周长的比等于相似比,④相似多边形面积的比等于相似比的平方,故选D.【题目点拨】本题考查了相似多边形的性质,即相似多边形对应边的比相等、应面积的比等于相似比的平方.9、B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【题目详解】解:连接BE,如图,

∵AB为直径,

∴∠AEB=90°,

而AC为正方形的对角线,

∴AE=BE=CE,

∴弓形AE的面积=弓形BE的面积,

∴阴影部分的面积=△BCE的面积,

∴镖落在阴影部分的概率=.

故选:B.【题目点拨】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.10、A【分析】根据有理数的定义判断即可.【题目详解】A、﹣2是有理数,故本选项正确;B、是无理数,故本选项错误;C、﹣1是无理数,故本选项错误;D、π是无理数,故本选项错误;故选:A.【题目点拨】本题考查有理数和无理数的定义,关键在于牢记定义.二、填空题(每小题3分,共24分)11、①④【分析】先将函数解析式化成交点时后,可得对称轴表达式,及与x轴交点坐标,由此可以判断增减性.【题目详解】解:,对称轴为,①,故该函数图象经过,故正确;②,,该函数图象顶点不可能在第三象限,故错误;③,则当时,y随着x的增大而增大,故此项错误;④当时,即,y随着x的增大而减小,故此项正确.【题目点拨】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.12、1【分析】由于l1∥l2∥l3,根据平行线分线段成比例得到,然后把数值代入求出DF.【题目详解】解:∵l1∥l2∥l3,

∴,即,

∴DE=1.故答案为:1【题目点拨】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13、9.6【解题分析】试题分析:设树的高度为x米,根据在同一时刻物高与影长成比例,即可列出比例式求解.设树的高度为x米,由题意得解得则树的高度为9.6米.考点:本题考查的是比例式的应用点评:解答本题的关键是读懂题意,准确理解在同一时刻物高与影长成比例,正确列出比例式.14、∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE(填一个即可).【分析】根据相似三角形的判定方法,已知一组角相等则再添加一组相等的角或夹该角的两个边对应成比例即可推出两三角形相似.【题目详解】∵∠DAB=∠CAE,∴∠DAE=∠BAC,∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.故答案为:∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE(填一个即可).【题目点拨】本题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.15、6π【分析】直接利用弧长公式计算即可.【题目详解】利用弧长公式计算:该莱洛三角形的周长(cm)故答案为6π【题目点拨】本题考查了弧长公式,熟练掌握弧长公式是解题关键.16、-1【分析】根据两个点关于原点对称时,它们的坐标符号相反,可直接得到m=-3,n=-1进而得到答案.【题目详解】解:∵点A(m,1)与点B(3,n)关于原点对称,

∴m=-3,n=-1,

∴m+n=-1,

故答案为:-1.【题目点拨】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.17、【解题分析】设则所以,故答案为:.18、<【分析】首先根据开口方向确定a的符号,再依据对称轴的正负和a的符号即可判断b的符号,然后根据与Y轴的交点的纵坐标即可判断c的正负,代入即可判断abc的正负.【题目详解】解:∵图象开口方向向上,∴a>0.∵图象的对称轴在x轴的负半轴上,∴.

∵a>0,∴b>0.∵图象与Y轴交点在y轴的负半轴上,

∴c<0.∴abc<0.故答案为<.【题目点拨】本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,此题运用了数形结合思想.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)连结OA,根据已知条件得到∠AOE=∠BEF,根据平行线的性质得到OA⊥AC,于是得到结论;(2)连接OF,设∠AFE=α,则∠BEF=2α,得到∠BAF=∠BEF=2α,得到∠OAF=∠BAO=α,求得∠AFO=∠OAF=α,根据全等三角形的性质得到AB=AF=5,由勾股定理得到AD==3,根据圆周角定理得到∠BAE=90°,根据相似三角形的性质即可得到结论.【题目详解】解(1)证明:连结OA,∴∠AOE=2∠F,∵∠BEF=2∠F,∴∠AOE=∠BEF,∴AO∥DF,∵DF⊥AC,∴OA⊥AC,∴AC为⊙O切线;(2)解:连接OF,∵∠BEF=2∠F,∴设∠AFE=α,则∠BEF=2α,∴∠BAF=∠BEF=2α,∵∠B=∠AFE=α,∴∠BAO=∠B=α,∴∠OAF=∠BAO=α,∵OA=OF,∴∠AFO=∠OAF=α,∴△ABO≌△AFO(AAS),∴AB=AF=5,∵DF=4,∴AD==3,∵BE是⊙O的直径,∴∠BAE=90°,∴∠BAE=∠FDA,∵∠B=∠AFD,∴△ABE∽△DFA,∴=,∴=,∴BE=,∴⊙O半径=.【题目点拨】本题考查了切线的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.20、(1);(2)当销售单价定为50元时,该纪念品每天的销售利润最大,最大利润为3000元.【分析】(1)利用“实际销售量=原销售量-10×”可得日销售量y(台)与销售单价为x(元)之间的函数关系式;(2))设每天的销售利润为w元,按照每件的利润乘以实际销量可得w与x之间的函数关系式,根据每天的销售量不少于15件,且每件纪念品的利润至少为30元求出x的取值范围,利用二次函数的性质可得答案;【题目详解】(1);(2)设每天的销售利润为w元.则,∵,∴,∵且对称轴为:直线,∴抛物线开口向下,在对称轴的右侧,w随着x的增大而减小,∴当时,w取最大值为3000元.答:当销售单价定为50元时,该纪念品每天的销售利润最大,最大利润为3000元.【题目点拨】本题考查了一次函数的应用,二次函数的应用,以及一元一次不等式组的应用,熟练掌握二次函数的性质是解答本题的关键.21、(1)100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在100分以上(含100分)的次数更多.【分析】(1)根据平均数公式和方差公式计算即可;(2)通过成绩逐渐的变化情况或100分以上(含100分)的次数分析即可.【题目详解】解:(1)乙=乙=故答案为:100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在100分以上(含100分)的次数更多.【题目点拨】此题考查的是求平均数和方差,掌握平均数公式和方差公式是解决此题的关键.22、(1)证明见解析;(2)【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理可证AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;

(2)由菱形的性质得出AC⊥BD,OD=BD=3,再由三角函数即可得出AD的长.【题目详解】(1)证明:∵AE∥BF,

∴∠ADB=∠CBD,

又∵BD平分∠ABF,

∴∠ABD=∠CBD,

∴∠ABD=∠ADB,

∴AB=AD,

同理可证AB=BC,

∴AD=BC,

∴四边形ABCD是平行四边形,

又∵AB=AD,

∴四边形ABCD是菱形;

(2)解:∵四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论