山东省济南市中学2024届九年级数学第一学期期末达标检测模拟试题含解析_第1页
山东省济南市中学2024届九年级数学第一学期期末达标检测模拟试题含解析_第2页
山东省济南市中学2024届九年级数学第一学期期末达标检测模拟试题含解析_第3页
山东省济南市中学2024届九年级数学第一学期期末达标检测模拟试题含解析_第4页
山东省济南市中学2024届九年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济南市中学2024届九年级数学第一学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列命题中,为真命题的是()A.同位角相等 B.相等的两个角互为对顶角C.若a2=b2,则a=b D.若a>b,则﹣2a<﹣2b2.已知关于的一元二次方程的两根为,,则一元二次方程的根为()A.0,4 B.-3,5 C.-2,4 D.-3,13.如图,把绕点逆时针旋转,得到,点恰好落在边上的点处,连接,则的度数为()A. B. C. D.4.如图,点O是矩形ABCD的对角线AC的中点,交AD于点M,若,,则OB的长为A.4 B.5 C.6 D.5.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.“汽车行驶到有交通信号灯的路口时,前方恰好遇到绿灯”,这个事件是()A.确定事件 B.随机事件 C.不可能事件 D.必然事件7.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF,若AB=3,则菱形AECF的面积为()A.1 B.2 C.2 D.48.若抛物线y=ax2+2ax+4(a<0)上有A(-,y1),B(-

,y2),C(

,y3)三点,则y1,y2,y3的大小关系为()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y19.根据表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值(其中m>0>n),下列结论正确的()x…0124…y…mkmn…A.abc>0 B.b2﹣4ac<0 C.4a﹣2b+c<0 D.a+b+c<010.下列方程中,关于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.二、填空题(每小题3分,共24分)11.如图,点在反比例函数的图象上,过点作坐标轴的垂线交坐标轴于点、,则矩形的面积为_________.12.已知,是关于的方程的两根,且满足,则的值为_______.13.如图,将绕着点顺时针旋转后得到,若,,则的度数是__________.14.如图,已知矩形ABCD的两条边AB=1,AD=,以B为旋转中心,将对角线BD顺时针旋转60°得到线段BE,再以C为圆心将线段CD顺时针旋转90°得到线段CF,连接EF,则图中阴影部分面积为_____.15.在中,,,,则内切圆的半径是__________.16.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形ABC,点D是母线AC的中点,一只蚂蚁从点B出发沿圆锥的表面爬行到点D处,则这只蚂蚁爬行的最短距离是_______cm.17.如图,△ABC绕点A逆时针旋转得到△AB′C′,点C在AB'上,点C的对应点C′在BC的延长线上,若∠BAC'=80°,则∠B=______度.18.方程和方程同解,________.三、解答题(共66分)19.(10分)如图,已知矩形的边,,点、分别是、边上的动点.(1)连接、,以为直径的交于点.①若点恰好是的中点,则与的数量关系是______;②若,求的长;(2)已知,,是以为弦的圆.①若圆心恰好在边的延长线上,求的半径:②若与矩形的一边相切,求的半径.20.(6分)若矩形的长为,宽为,面积保持不变,下表给出了与的一些值求矩形面积.(1)请你根据表格信息写出与之间的函数关系式;(2)根据函数关系式完成下表184221.(6分)如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点B,E为BC中点,AC=,BC=4.(1)求证:DE为圆O的切线;(2)求阴影部分面积.22.(8分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:△APD≌△CPD;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.23.(8分)在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是,与的位置关系是;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.24.(8分)某市政府高度重视教育工作,财政资金优先保障教育,2017年新校舍建设投入资金8亿元,2019年新校舍建设投入资金11.52亿元。求该市政府从2017年到2019年对校舍建设投入资金的年平均增长率.25.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.26.(10分)如图,抛物线的对称轴是直线,且与轴相交于A,B两点(点B在点A的右侧),与轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B,C重合),则是否存在一点P,使△BPC的面积最大?若存在,请求出△BPC的最大面积;若不存在,试说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】根据同位角、对顶角和等式以及不等式的性质,逐一判断选项,即可.【题目详解】A、两直线平行,同位角相等,原命题是假命题;B、相等的两个角不一定互为对顶角,原命题是假命题;C、若a2=b2,则a=b或a=﹣b,原命题是假命题;D、若a>b,则﹣2a<﹣2b,是真命题;故选:D.【题目点拨】本题主要考查真假命题的判断,熟练掌握常用的公理,定理,推论和重要结论,是解题的关键.2、B【分析】先将,代入一元二次方程得出与的关系,再将用含的式子表示并代入一元二次方程求解即得.【题目详解】∵关于的一元二次方程的两根为,∴或∴整理方程即得:∴将代入化简即得:解得:,故选:B.【题目点拨】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.3、D【分析】由旋转的性质可得AB'=AB,∠BAB'=50°,由等腰三角形的性质可得∠AB'B=∠ABB'=65°.【题目详解】解:∵Rt△ABC绕点A逆时针旋转50°得到Rt△AB′C′,

∴AB'=AB,∠BAB'=50°,∴,故选:D.【题目点拨】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.4、B【分析】由平行线分线段成比例可得,由勾股定理可得,由直角三角形的性质可得OB的长.【题目详解】解:四边形ABCD是矩形,,,,且,,在中,点O是斜边AC上的中点,故选B.【题目点拨】本题考查了矩形的性质,勾股定理,直角三角形的性质,求CD的长度是本题的关键.5、C【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【题目详解】解:A、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;B、此图形是轴对称图形,不是中心对称图形,此选项不符合题意;C、此图形是轴对称图形,也是中心对称图形,此选项符合题意;D、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;故选:C.【题目点拨】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.6、B【分析】直接利用随机事件的定义分析得出答案.【题目详解】解:“汽车行驶到有交通信号灯的路口时,前方恰好遇到绿灯”,这个事件是随机事件.故选B.【题目点拨】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.7、C【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【题目详解】解:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC===,又∵AE=AB﹣BE=3﹣1=2,则菱形的面积是:AEBC=2.故选C.【题目点拨】本题考查折叠问题以及勾股定理.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.8、C【分析】根据抛物线y=ax2+2ax+4(a<0)可知该抛物线开口向下,可以求得抛物线的对称轴,又因为抛物线具有对称性,从而可以解答本题.【题目详解】解:∵抛物线y=ax2+2ax+4(a<0),∴对称轴为:x=,∴当x<−1时,y随x的增大而增大,当x>−1时,y随x的增大而减小,∵A(−,y1),B(−,y2),C(,y3)在抛物线上,且−<−,−0.5<,∴y3<y1<y2,故选:C.【题目点拨】本题考查二次函数的性质,解题的关键是明确二次函数具有对称性,在对称轴的两侧它的增减性不一样.9、C【分析】用二次函数的图象与性质进行解答即可.【题目详解】解:如图:由抛物线的对称性可知:(0,m)与(2,m)是对称点,故对称轴为x=1,∴(﹣2,n)与(4,n)是对称点,∴4a﹣2b+c=n<0,故选:C.【题目点拨】本题考查二次函数图像的性质,熟练运用二次函数的图像与性质是解答本题的关键.10、C【分析】利用一元二次方程的定义判断即可.【题目详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+=7是分式方程,不符合题意,故选:C.【题目点拨】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【题目详解】解:∵PA⊥x轴于点A,PB⊥y轴于B点,

∴矩形AOBP的面积=|1|=1.

故答案为:1.【题目点拨】本题考查了反比例函数(k≠0)系数k的几何意义:从反比例函数(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.12、5【分析】由韦达定理得,,将其代入即可求得k的值.【题目详解】解:、是方程的两个根,,.,.故答案为:.【题目点拨】本题主要考查根与系数的关系,解题的关键是掌握韦达定理与方程的解的定义.13、【分析】根据旋转的性质,得到,,利用三角形内角和定理,得到,即可得到答案.【题目详解】解:将绕着点顺时针旋转后得到,∴,,∴,∴.故答案为:20°.【题目点拨】本题考查了旋转的性质,三角形内角和定理,以及角的和差问题,解题的关键是熟练掌握旋转的性质,正确求出角的度数.14、【分析】矩形ABCD的两条边AB=1,AD=,得到∠DBC=30°,由旋转的性质得到BD=BE,∠BDE=60°,求得∠CBE=∠DBC=30°,连接CE,根据全等三角形的性质得到∠BCE=∠BCD=90°,推出D,C,E三点共线,得到CE=CD=1,根据三角形和扇形的面积公式即可得到结论.【题目详解】∵矩形ABCD的两条边AB=1,AD=,∴,∴∠DBC=30°,∵将对角线BD顺时针旋转60°得到线段BE,∴BD=BE,∠BDE=60°,∴∠CBE=∠DBC=30°,连接CE,∴△DBC≌△EBC(SAS),∴∠BCE=∠BCD=90°,∴D,C,E三点共线,∴CE=CD=1,∴图中阴影部分面积=S△BEF+S△BCD+S扇形DCF﹣S扇形DBE=+﹣=,故答案为:.【题目点拨】本题考查了旋转的性质,解直角三角形,矩形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.15、1【分析】先根据勾股定理求出斜边AB的长,然后根据直角三角形内切圆的半径公式:(其中a、b为直角三角形的直角边、c为直角三角形的斜边)计算即可.【题目详解】解:在中,,,,根据勾股定理可得:∴内切圆的半径是故答案为:1.【题目点拨】此题考查的是求直角三角形内切圆的半径,掌握直角三角形内切圆的半径公式:(其中a、b为直角三角形的直角边、c为直角三角形的斜边)是解决此题的关键.16、25【题目详解】解:∵圆锥的底面周长是4π,则4π=nπ×4180∴n=180°即圆锥侧面展开图的圆心角是180°,∴在圆锥侧面展开图中AD=2,AB=4,∠BAD=90°,∴在圆锥侧面展开图中BD=20=2∴这只蚂蚁爬行的最短距离是25cm.故答案为:25.17、1【分析】根据旋转的性质和等腰三角形的性质即可得到结论.【题目详解】解:∵△ABC绕点A逆时针旋转得到△AB′C′,∴∠C′AB′=∠CAB,AC′=AC,∵∠BAC'=80°,∴∠C′AB′=∠CAB=C′AB=40°,∴∠ACC′=70°,∴∠B=∠ACC′﹣∠CAB=1°,故答案为:1.【题目点拨】本题考查了旋转的性质,等腰三角形的性质,三角形的外角的性质,正确的识别图形是解题的关键.18、【解题分析】分别求解两个方程的根即可.【题目详解】解:,解得x=3或m;,解得x=3或-1,则m=-1,故答案为:-1.【题目点拨】本题考查了运用因式分解法解一元二次方程.三、解答题(共66分)19、(1)①;②1.5;(2)①5;②、,、5.【解题分析】(1)①根据直径所对的圆周角是直角判断△APQ为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ∽△QBA,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分与矩形的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【题目详解】解:(1)①如图,PQ是直径,E在圆上,∴∠PEQ=90°,∴PE⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP,∵∠QPB=2∠AQP.\②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴,∴,∴BP=1.5;(2)①如图,BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴的半径是5.②如图,与矩形的一边相切有4种情况,如图1,当与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=,∴半径为.如图2,当与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,,解得(舍去),,∴ON=,∴半径为.如图3,当与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y,则OM=OP=OQ=4-1-y=3-y,由勾股定理得,,解得(舍去),,∴OM=,∴半径为.如图4,当与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴半径为5.综上所述,若与矩形的一边相切,为的半径,,,5.【题目点拨】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.20、(1);(2)6,,2,【分析】(1)矩形的宽=矩形面积÷矩形的长,设出关系式,由于(1,4)满足,故可求得k的值;

(2)根据(1)中所求的式子作答.【题目详解】解(1)设,由于在此函数解析式上,那么.∴(2)128642【题目点拨】本题考查了列函数关系式表式实际问题,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.在此函数上的点一定适合这个函数解析式.21、(1)证明见解析;(2)S阴影=4-2π【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S阴影=2S△ECO-S扇形COD即可求解.【题目详解】(1)连接DC、DO.因为AC为圆O直径,所以∠ADC=90°,则∠BDC=90°,因为E为Rt△BDC斜边BC中点,所以DE=CE=BE=BC,所以∠DCE=∠EDC,因为OD=OC,所以∠DCO=∠CDO.因为BC为圆O切线,所以BC⊥AC,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED⊥OD,所以DE为圆O的切线.(2)S阴影=2S△ECO-S扇形COD=4-2π【题目点拨】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.22、(1)证明见解析;(2)90°;(3)AP=CE.【分析】(1)利用正方形得到AD=CD,∠ADP=∠CDP=45,即可证明全等;(2)设,利用三角形内角和性质及外角性质得到,,再利用周角计算得出x值;(3)AP=CE.设,利用三角形内角和性质及外角性质得到,,求出,得到是等边三角形,即可证得AP=CE.【题目详解】解:(1)四边形ABCD是正方形,∴AD=CD,∠ADP=∠CDP=45,在与中,,∴;(2)设,由(1)得,,因为PA=PE,所以所以;(3)AP=CE.设,由(1)得,,∵PA=PE且在菱形ABCD中,∴,∴,由(1)得PA=PC,∴PC=PE,∴是等边三角形,∴PE=PC=CE,∴AP=CE.【题目点拨】此题考查全等三角形的判定,正方形的性质,菱形的性质,三角形的内角和及外角性质,(2)与(3)图形有变化,解题思路不变,做题中注意总结解题的方法.23、(1)BP=CE;CE⊥AD;(2)成立,理由见解析;(3).【解题分析】(1)①连接AC,证明△ABP≌△ACE,根据全等三角形的对应边相等即可证得BP=CE;②根据菱形对角线平分对角可得,再根据△ABP≌△ACE,可得,继而可推导得出,即可证得CE⊥AD;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,利用(1)的方法进行证明即可;(3)连接AC交BD于点O,CE,作EH⊥AP于H,由已知先求得BD=6,再利用勾股定理求出CE的长,AP长,由△APE是等边三角形,求得,的长,再根据,进行计算即可得.【题目详解】(1)①BP=CE,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;②CE⊥AD,∵菱形对角线平分对角,∴,∵△ABP≌△ACE,∴,∵,∴,∴,∴,∴CF⊥AD,即CE⊥AD;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD,∴(1)中的结论:BP=CE,CE⊥AD仍然成立;(3)连接AC交BD于点O,CE,作EH⊥AP于H,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∵∠ABC=60°,,∴∠ABO=30°,∴,BO=DO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵,,∴,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE是等边三角形,∴,,∵,∴,===,∴四边形ADPE的面积是.【题目点拨】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形判定与性质等,熟练掌握相关知识,正确添加辅助线是解题的关键.24、20%【分析】根据题意设该市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x,根据:2017年投入资金×(1+增长率)2=2019年投入资金,列出方程求解即可.【题目详解】解:设该市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x,列方程,解得.故该市政府从2017年到2019年对校舍建设投入资金的年平均增长率为20%.【题目点拨】本题主要考查一元二次方程的应用,由题意准确抓住相等关系并据此列出方程是解题的关键.25、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【题目详解】(1)由题意得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论