北师大版八年级数学上册 (探索勾股定理)勾股定理教学课件(第1课时)_第1页
北师大版八年级数学上册 (探索勾股定理)勾股定理教学课件(第1课时)_第2页
北师大版八年级数学上册 (探索勾股定理)勾股定理教学课件(第1课时)_第3页
北师大版八年级数学上册 (探索勾股定理)勾股定理教学课件(第1课时)_第4页
北师大版八年级数学上册 (探索勾股定理)勾股定理教学课件(第1课时)_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

探索勾股定理第一章勾股定理导入新课讲授新课当堂练习课堂小结第1课时

情境引入1.了解勾股定理的内容,理解并掌握直角三角形三边之间的数量关系.(重点)2.能够运用勾股定理进行简单的计算.(难点)学习目标导入新课如图,这是一幅美丽的图案,仔细观察,你能发现这幅图中的奥秘吗?带着疑问我们来一起探索吧.情境引入(图中每一格代表一平方厘米)(1)正方形P的面积是

平方厘米;(2)正方形Q的面积是

平方厘米;(3)正方形R的面积是

平方厘米.121SP+SQ=SRRQPACBAC2+BC2=AB2等腰直角三角形ABC三边长度之间存在什么关系吗?Sp=AC2SQ=BC2SR=AB2勾股定理的初步认识一讲授新课上面三个正方形的面积之间有什么关系?做一做:观察正方形瓷砖铺成的地面.填一填:观察右边两幅图:完成下表(每个小正方形的面积为单位1).

A的面积B的面积C的面积左图右图4

?怎样计算正方形C的面积呢?9

16

9

方法一:割方法二:补方法三:拼分割为四个直角三角形和一个小正方形.补成大正方形,用大正方形的面积减去四个直角三角形的面积.将几个小块拼成若干个小正方形,图中两块红色(或绿色)可拼成一个小正方形.分析表中数据,你发现了什么?A的面积B的面积C的面积左图4913右图16925结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

分别以5cm、12cm为直角三角形的直角边作出一个直角三角形ABC,测量斜边的长度,然后验证上述关系对这个直角三角形是否成立.13512ABC做一做几何语言:∵在Rt△ABC中,∠C=90°,∴a2+b2=c2(勾股定理).aABCbc∟总结归纳定理揭示了直角三角形三边之间的关系.

直角三角形两直角边的平方和等于斜边的平方.如果a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.勾股定理求下列直角三角形中未知边的长:练一练8x17125x解:由勾股定理可得:82+x2=172即:x2=172-82

x=15解:由勾股定理可得:

52+122=x2即:x2=52+122

x=13

我们一起穿越回到2500年前,跟随毕达哥拉斯再去他那位老朋友家做客,看到他朋友家用砖铺成的地面(如下图所示):ABC穿越毕达哥拉斯做客现场正方形A的面积正方形B的面积正方形C的面积+=一直角边2另一直角边2斜边2+=知识链接例1已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.利用勾股定理进行计算二典例精析解:由勾股定理可得,AB2=AC2+BC2=25,即AB=5.根据三角形面积公式,∴AC×BC=AB×CD.∴CD=.ADBC34方法总结

由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用.例2

如图,已知AD是△ABC的中线.求证:AB2+AC2=2(AD2+CD2).证明:如图,过点A作AE⊥BC于点E.在Rt△ACE、Rt△ABE和Rt△ADE中,AB2=AE2+BE2,AC2=AE2+CE2,AE2=AD2-ED2,∴AB2+AC2=(AE2+BE2)+(AE2+CE2)=2AD2+DB2+DC2+2DE(DC-DB).又∵AD是△ABC的中线,∴BD=CD,∴AB2+AC2=2AD2+2DC2=2(AD2+CD2).E方法总结

构造直角三角形,利用勾股定理把需要证明的线段联系起来.一般地,涉及线段之间的平方关系问题时,通常沿着这个思路去分析问题.解:当高AD在△ABC内部时,如图①.在Rt△ABD中,由勾股定理,得BD2=AB2-AD2=202-122=162,∴BD=16;在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=81,∴CD=9.∴BC=BD+CD=25,∴△ABC的周长为25+20+15=60.例3

在△ABC中,AB=20,AC=15,AD为BC边上的高,且AD=12,求△ABC的周长.题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.当高AD在△ABC外部时,如图②.同理可得BD=16,CD=9.∴BC=BD-CD=7,∴△ABC的周长为7+20+15=42.综上所述,△ABC的周长为42或60.方法总结解析:因为AE=BE,所以S△ABE=AE·BE=AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=AB2=;同理可得S△AHC+S△BCF=AC2+BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为AB2=.例4

如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.方法总结

求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.求下列图形中未知正方形的面积及未知边的长度(口答):

已知直角三角形两边,求第三边.练一练当堂练习1.图中阴影部分是一个正方形,则此正方形的面积为

.8cm10cm36cm²2.

求下列图中未知数x、y的值:解:由勾股定理可得:81+144=x2即:x2=225

x=15解:由勾股定理可得:

y2+144=169即:y2=25

y=53.在△ABC中,∠C=90°.(1)若a=6,b=8,则c=

.

(2)若c=13,b=12,则a=

.4.若直角三角形中,有两边长是3和4,则第三边长的平方为()

A25B14C7D7或25105D5.一高为2.5米的木梯,架在高为2.4米的墙上(如图),这时梯脚与墙的距离是多少?ABC解:在Rt△ABC中,根据勾股定理,得:BC2=AB2-AC2=2.52-2.42=0.49,所以BC=0.7.答:梯脚与墙的距离是0.7米.思维拓展S5=S1+S2=4,S7=S5+S6=10.已知S1=1,S2=3,S3=2,S4=4,求S5,S6,S7的值.S6=S3+S4=6,认识勾股定理如果直角三角形两直角边长分别为a,b,斜边长为c

,那么a2+b2=c2

课堂小结利用勾股定理进行计算探索勾股定理第一章勾股定理第2课时导入新课讲授新课当堂练习课堂小结

1.学会用几种方法验证勾股定理.(重点)2.能够运用勾股定理解决简单问题.(重点,难点)学习目标导入新课观察与思考

活动:请你利用自己准备的四个全等的直角三角形拼出以斜边为边长的正方形.

有不同的拼法吗?讲授新课勾股定理的验证一

据不完全统计,验证的方法有400多种,你有自己的方法吗?问题:上节课我们认识了勾股定理,你还记得它的内容吗?那么如何验证勾股定理呢?aaaabbbbcccc方法小结:我们利用拼图的方法,将形的问题与数的问题结合起来,再进行整式运算,从理论上验证了勾股定理.

验证方法一:毕达哥拉斯证法大正方形的面积可以表示为

;也可以表示为.(a+b)2c2+4•ab∵(a+b)2=

c2+4•ab

a2+2ab+b2=

c2+2ab∴a2+b2=c2cabcab

验证方法二:赵爽弦图bcabc大正方形的面积可以表示为

;也可以表示为.∵

c2=4•ab+(b-a)2

=2ab+b2-2ab+a2

=a2+b2∴a2+b2=c2c24•ab+(b-a)2bcabcaABCD如图,梯形由三个直角三角形组合而成,利用面积公式,列出代数关系式,得化简,得

验证方法三:美国总统证法abc青入青方青出青出青入朱入朱方朱出青朱出入图课外链接abcABCDEFO达·芬奇对勾股定理的证明ⅠⅡAaBCbDEFOⅠⅡA′B′C′D′E′F′

如图,过A点画一直线AL使其垂直于DE,并交DE于L,交BC于M.通过证明△BCF≌△BDA,利用三角形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与矩形MLEC也等积,于是推得欧几里得证明勾股定理推荐书目议一议观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c2.勾股定理的简单应用二例1:我方侦查员小王在距离东西向公路400m处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400m,10s后,汽车与他相距500m,你能帮小王计算敌方汽车的速度吗?公路BCA400m500m解:由勾股定理,得AB2=BC2+AC2,即5002=BC2+4002,所以,BC=300.敌方汽车10s行驶了300m,那么它1h行驶的距离为300×6×60=108000(m)即它行驶的速度为108km/h.练一练1.湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为()ABCA.50米B.120米C.100米D.130米130120?AABC2.如图,太阳能热水器的支架AB长为90cm,与AB垂直的BC长为120cm.太阳能真空管AC有多长?解:在Rt△ABC中,由勾股定理,

得AC2=AB2+BC2,AC2=902+1202,

AC=150(cm).答:太阳能真空管AC长150cm.例2:如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和.解:作点B关于MN的对称点B′,连接AB′,交A1B1于P点,连BP.则AP+BP=AP+PB′=AB′,易知P点即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B两村庄的最短距离和是10km.变式:如图,在一条公路上有A、B两站相距25km,C、D为两个小镇,已知DA⊥AB,CB⊥AB,DA=15km,CB=10km,现在要在公路边上建设一个加油站E,使得它到两镇的距离相等,请问E站应建在距A站多远处?DAEBC151025-x当堂练习1.在直角三角形中,满足条件的三边长可以是

.(写出一组即可)【解析】答案不唯一,只要满足式子a2+b2=c2即可.答案:3,4,5(满足题意的均可)2.如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,阳光透过的最大面积是_________.200m23.如图,一根旗杆在离地面9m处折断,旗杆顶部落在离旗杆底部12m处.旗杆原来有多高?12m9m解:设旗杆顶部到折断处的距离为xm,根据勾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论