版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省绥化市新生中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知样本:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,11.那么频率为0.2的范围是(
)A.5.5~7.5
B.7.5~9.5
C.9.5~11.5
D.11.5~13.5参考答案:D2.函数f(x)=log2(1?x)的图象为参考答案:A3.△ABC的面积是,∠B是钝角,AB=1,BC=,则AC=()A.5 B.2 C. D.1参考答案:C【考点】正弦定理.【分析】由题意和三角形的面积公式列出方程求出sinB,由B的范围和特殊角的三角函数值求出B,由余弦定理列出式子化简后求出AC的值.【解答】解:∵△ABC的面积是,AB=1,BC=,∴,解得sinB=,∵∠B是钝角,∴B=,由余弦定理得,AC2=AB2+BC2﹣2?AB?BC?cosB=1+2﹣2×=5,则AC=,故选C.4.(
)A.
B.
C.
D.
参考答案:D略5.设是非零实数,则方程及所表示的图形可能是(
)参考答案:C
6.空间直角坐标系中已知点P(0,0,)和点C(﹣1,2,0),则在y上到P,C的距离相等的点M的坐标是()A.(0,1,0) B.(0,,0) C.(0,﹣,0) D.(0,2,0)参考答案:B【考点】空间两点间的距离公式.【分析】根据题意,设出点M的坐标,利用|MP|=|MC|,求出M的坐标.【解答】解:根据题意,设点M(0,y,0),∵|MP|=|MC|,∴02+y2+=12+(y﹣2)2+02,即y2+3=1+y2﹣4y+4,∴4y=2,解得y=,∴点M(0,,0).故选:B.7.等差败列{an}的前n项和为Sn,若a3+a16=10,则S18=()A.50 B.90 C.100 D.190参考答案:B【考点】等差数列的前n项和.【分析】利用等差数列的通项公式及前n项和公式求解.【解答】解:∵等差败列{an}的前n项和为Sn,a3+a16=10,S18=(a1+a18)=9(a3+a16)=90.故选:B.8.已知曲线y=lnx的切线过原点,则此切线的斜率为()A.e B.﹣e C. D.﹣参考答案:C【考点】6H:利用导数研究曲线上某点切线方程.【分析】设切点坐标为(a,lna),求函数的导数,可得切线的斜率,切线的方程,代入(0,0),求切点坐标,切线的斜率.【解答】解:设切点坐标为(a,lna),∵y=lnx,∴y′=,切线的斜率是,切线的方程为y﹣lna=(x﹣a),将(0,0)代入可得lna=1,∴a=e,∴切线的斜率是=;故选:C.9.双曲线C的方程为为其渐近线,F为右焦点,过F作且交双曲线C于R,交于M。若,则双曲线的离心率的取值范围为(
)
A.
B.
C.
D.
参考答案:B略10.设为定义在上的奇函数,当时,(为常数),则(A)-3
(B)-1
(C)1
(D)3参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.点P在圆上,点Q在圆上,则的最小值为
参考答案:12.某班有50名学生,一次考试后数学成绩ξ(ξ∈N)~正态分布N(100,102),已知P(90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为_________________.参考答案:10
略13.过点且与直线平行的直线方程是
参考答案:设与直线平行的直线方程为,把点(0,3)代入可得0-3+c=0,c=3,故所求的直线的方程为,考点:直线的一般式方程与直线的平行关系.点评:本题主要考查利用待定系数法求直线的方程,属于基础题.14.在平面几何里,已知的两边互相垂直,且,则边上的高;拓展到空间,如图,三棱锥的三条侧棱两两相互垂直,且,则点到面的距离参考答案:15.若,其中为虚数单位,则
参考答案:4略16.设函数f(x)的导数为,且,则
.参考答案:试题分析:,而,所以,,故填:.考点:导数17.过点(1,2)且在两坐标轴上的截距相等的直线的方程__________
.参考答案:y=2x或x+y-3=0略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.参考答案:【考点】解三角形.【分析】(1)利用正弦定理把已知条件转化成角的正弦,整理可求得sinC,进而求得C.(2)利用三角形面积求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.【解答】解:(1)∵=2csinA∴正弦定理得,∵A锐角,∴sinA>0,∴,又∵C锐角,∴(2)三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC即7=a2+b2﹣ab,又由△ABC的面积得.即ab=6,∴(a+b)2=a2+b2+2ab=25由于a+b为正,所以a+b=5.19.(本小题13分)某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求的值;(Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.参考答案:略20.甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人.(1)根据以上数据建立一个2×2的列联表;(2)试判断是否成绩与班级是否有关?参考公式:;0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83
参考答案:(1)列联表见解析;(2)成绩与班级有关.试题分析:(1)由题意知按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24,从而做出甲班不及格的人数是和乙班不及格的人数是,列出表格,填入数据即可;(2)根据所给的数据,代入求观测值的公式,求出观测值,把观测值与临界值比较,得到有的把握认为“成绩与班级有关”.试题解析:(1)2×2列联表如下:
不及格及格总计甲班43640乙班162440总计206080
(2)由,所以有99.5%的把握认为“成绩与班级有关系”.【方法点睛】本题主要考查独立性检验的应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3)查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)21.已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由安徽卫视推出的大型户外竞技类活动《男生女生向前冲》.活动共有四关,若四关都闯过,则闯关成功,否则落水失败.设男生闯过一至四关的概率依次是,,,,女生闯过一至四关的概率依次是,,,.(Ⅰ)求男生甲闯关失败的概率;(Ⅱ)设X表示四人冲关小组闯关成功的人数,求随机变量X的分布列和期望.参考答案:【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(Ⅰ)利用对立事件计算“男生甲闯关失败”的概率;(Ⅱ)计算“一位女生闯关成功”的概率,得出变量X的所有可能取值,计算对应的概率值,写出X的分布列,计算数学期望值.【解答】解:(Ⅰ)记“男生甲闯关失败”为事件A,则“男生甲闯关成功”为事件,∴P(A)=1﹣P()=1﹣×××=1﹣=;(Ⅱ)记“一位女生闯关成功”为事件B,则P(B)=×××=,随机变量X的所有可能取值为0,1,2,3,4;且P(X=0)=×=,P(X=1)=???+???=,P(X=3)=???+???=,P(X=4)=×=,P(X=2)=1﹣=;∴X的分布列为:X01234P∴数学期望为E(X)=0×+1×+2×+3×+4×=.22.(本小题满分12分)已知函数f(x)=ex+2x2—3x(I)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当x≥1时,若关于x的不等式f(x)≥ax恒成立,求实数a的取值范围;(Ⅲ)求证函数f(x)在区间参考答案:.Ⅲ)∵f'(0)=e0-3=-2<0,f'(1)=e+1>0,
∴f'(0)·f'(1)<0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版土地流转承包项目合作开发投资合同范本3篇
- 2025年代理费用协议范本
- 2025年销售人员任职协议书:互联网销售团队建设协议2篇
- 2025年度风力发电场建设与运营合同范本4篇
- 二零二五年艺术品鉴定兼职人员保密责任书3篇
- 基于2025年度房产政策的商品房销售合同
- 2025年度跨境电子商务税收风险担保协议4篇
- 二零二五年度直播主播与影视作品合作合同
- 2025年度供应链金融货物冲抵货款风险控制协议
- 二零二五年度门面房房屋租赁押金合同
- 寒潮雨雪应急预案范文(2篇)
- 垃圾车驾驶员聘用合同
- 2024年大宗贸易合作共赢协议书模板
- 变压器搬迁施工方案
- 单位转账个人合同模板
- 八年级语文下册 成语故事 第十五课 讳疾忌医 第六课时 口语交际教案 新教版(汉语)
- 2024年1月高考适应性测试“九省联考”数学 试题(学生版+解析版)
- EPC项目采购阶段质量保证措施
- T-NAHIEM 101-2023 急诊科建设与设备配置标准
- 四川2024年专业技术人员公需科目“数字经济与驱动发展”参考答案(通用版)
- 煤炭装卸服务合同
评论
0/150
提交评论